NATURAL CONVECTION IN A RESERVOIR SIDEARM SUBJECT TO SOLAR RADIATION: A TWO-DIMENSIONAL SIMULATION

2002 ◽  
Vol 42 (1-2) ◽  
pp. 13-32 ◽  
Author(s):  
Chengwang Lei ◽  
John C. Patterson
1992 ◽  
Vol 114 (2) ◽  
pp. 410-417 ◽  
Author(s):  
K. C. Karki ◽  
P. S. Sathyamurthy ◽  
S. V. Patankar

Numerical solutions are obtained for fluid flow and heat transfer in a cubic enclosure with a vertical adiabatic partition. The two zones of the enclosure are connected by a single rectangular opening. The partition is oriented parallel to the isothermal sidewalls, one of which is heated and the other cooled while the remaining walls are adiabatic. Results have been presented for air for the Rayleigh numbers in the range 104−107. The width of the opening is held fixed while the height, relative to the enclosure height, is varied from 0.25 to 0.75. The effects of various parameters on the flow structure and heat transfer are investigated. The results of the three-dimensional simulation have also been compared with those for the corresponding two-dimensional configurations.


2018 ◽  
Author(s):  
Haibo Li ◽  
Maocheng Tian ◽  
Xiaohang Qu ◽  
Min Wei

AIP Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 055209
Author(s):  
Yong Che ◽  
Qing Zang ◽  
Xiaofeng Han ◽  
Shumei Xiao ◽  
Kai Huang ◽  
...  

2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Jesús García ◽  
Iván Portnoy ◽  
Ricardo Vasquez Padilla ◽  
Marco E. Sanjuan

Variation in direct solar radiation is one of the main disturbances that any solar system must handle to maintain efficiency at acceptable levels. As known, solar radiation profiles change due to earth's movements. Even though this change is not manipulable, its behavior is predictable. However, at ground level, direct solar radiation mainly varies due to the effect of clouds, which is a complex phenomenon not easily predictable. In this paper, dynamic solar radiation time series in a two-dimensional (2D) spatial domain are obtained using a biomimetic cloud-shading model. The model is tuned and compared against available measurement time series. The procedure uses an objective function based on statistical indexes that allow extracting the most important characteristics of an actual set of curves. Then, a multi-objective optimization algorithm finds the tuning parameters of the model that better fit data. The results showed that it is possible to obtain responses similar to real direct solar radiation transients using the biomimetic model, which is useful for other studies such as testing control strategies in solar thermal plants.


Sign in / Sign up

Export Citation Format

Share Document