scholarly journals Two-dimensional simulation of an Ar/H2 direct-current discharge plasma

AIP Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 055209
Author(s):  
Yong Che ◽  
Qing Zang ◽  
Xiaofeng Han ◽  
Shumei Xiao ◽  
Kai Huang ◽  
...  
2009 ◽  
Vol 16 (5) ◽  
pp. 053707 ◽  
Author(s):  
Giichiro Uchida ◽  
Satoru Iizuka ◽  
Tetsuo Kamimura ◽  
Noriyoshi Sato

2020 ◽  
Vol 12 ◽  
pp. 175682771989446
Author(s):  
Siyin Zhou ◽  
Tianyi Shi ◽  
Wansheng Nie

To study the effects of quasi-direct current discharge plasma on the initiation of a pulse detonation engine at multiple locations, we proposed a double-zones quasi-direct current discharge plasma ignition scheme. Based on the establishment of the plasma-assisted detonation initiation model, the process of detonation wave formation in the mixture of hydrogen and air by single and double ignition zone were studied by numerical method. The wave structure, component evolution history, and Zeldovich–von Neumann–Döring curve after forming a stable detonation wave were all discussed. The simulation results indicate that due to its higher total ignition energy and the synchronous propagation of multiple compression waves, double-zone plasma ignition has a 17.9% shorter deflagration to detonation transition time and 14.2% lower detonation distance compared to the single-zone scheme. The double-zone scheme does not modify the peak flow field temperature and pressure when the stable detonation wave is formed, resulting in smoother pressure and temperature increases.


1968 ◽  
Vol 40 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Robert S. Braman ◽  
Alexander. Dynako

Sign in / Sign up

Export Citation Format

Share Document