Thermo-distortion characteristics of spiral groove gas face seal at high temperature

2019 ◽  
Vol 77 (3) ◽  
pp. 242-256
Author(s):  
Jing Xie ◽  
Chunhong Ma ◽  
Shaoxian Bai
2012 ◽  
Vol 184-185 ◽  
pp. 180-183 ◽  
Author(s):  
Gang Ma ◽  
Wei Zhao ◽  
Xin Min Shen

The three dimensional model was established for studying performance of spiral groove gas face seal. According to machining features of different surface area, the seal face can be divided into three parts, rotor ring grooved area, rotor ring non-grooved area and static ring area. The effect of roughness on seal performance was analyzed based on calculation of three dimensional flow field. The analysis results show that the surface roughness of rotor ring grooved area has great influence on the seal performance, but the influence is little when roughness on non-grooved rotor ring surface and static ring surface. The influence must be considered when surface roughness of rotor ring grooved area bigger than 0.2μm. Roughness of rotor ring surface can increase the loading force while it also can cause the increase of leakage. It is important to select rational roughness when designing gas face seal.


Author(s):  
Xu-Dong Peng ◽  
Song-En Sheng ◽  
Xiao-Ni Yin ◽  
Ji-Yun Li

Considering the effects of surface roughness and slip flow, the extended Reynolds equation presented by Makino et al [1] is used to set up the finite element model for a non-contact spiral groove dry gas face seal (S-DGS). The analyses for a typical S-DGS at low speed (≤ 500 rpm) and low pressure (≤ 0.606 MPa) showed that the effect of slip flow on the sealing performance is significant for 0.05≤ Kn < 1.0, where Kn refers to the Knudsen number, but the effect of surface roughness on the sealing performance varies with the different areas of both the two faces. When the standard deviation of composite roughness is less than 1.0 micron and in the range of 0.5≤ Kn≤ 1.0, the effects of surface roughness and slip flow diminished on gas film stiffness and frictional work but are still significant on the leakage rate. The effect of surface roughness of the spiral groove bottom is significant and should be considered, but the effects of the other surface roughness, i.e. the soft ring surface roughness and the un-grooved hard ring surface roughness, are negligible only when the value of the standard deviation of composite roughness meets with API standards.


Author(s):  
Xu-Dong Peng ◽  
Li-Li Tan ◽  
Ji-Yun Li ◽  
Song-En Sheng ◽  
Shao-Xian Bai

A two-dimensional Reynolds equation was established for isothermal compressible gas between the two faces of a dry gas face seal with both spiral grooves and an inner annular groove onto the hard face. The opening force, the leakage rate, the axial film stiffness and the film stiffness to leakage ratio were calculated by finite element method. The comparisons with the sealing performances of a typical gas face seal only with spiral grooves onto its hard face were made. The effects of the face geometric parameters on the static behavior of such a seal were analyzed. The optimization principle for geometric parameters of a dry gas face seals with spiral grooves and an inner annular groove was presented. The recommended geometric parameters of spiral grooves and circular groove presented by optimization can ensure larger axial stiffness while lower leakage rates.


2018 ◽  
Vol 61 (6) ◽  
pp. 1048-1056 ◽  
Author(s):  
Mathieu Rouillon ◽  
Noël Brunetière

Author(s):  
Haojiong Zhang ◽  
Brad A. Miller ◽  
Robert G. Landers

A nonlinear reduced-order modeling approach based on Proper Orthogonal Decomposition (POD) is utilized to develop an efficient low order model, based on ordinary differential equations, for mechanical gas face seal systems. An example of a coned mechanical gas face seal in a flexibly mounted stator configuration is presented. The axial mode is modeled, and simulation studies are conducted using different initial conditions and forcing inputs. The results agree well with a fully meshed finite difference model, while the resulting model order is significantly decreased.


Sign in / Sign up

Export Citation Format

Share Document