Overview of strategies for developing high thermostability industrial enzymes: Discovery, mechanism, modification and challenges

Author(s):  
Hao Wu ◽  
Qiuming Chen ◽  
Wenli Zhang ◽  
Wanmeng Mu
2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Iulia Lupan ◽  
Sergiu Chira ◽  
Maria Chiriac ◽  
Nicolae Palibroda ◽  
Octavian Popescu

Amino acids are obtained by bacterial fermentation, extraction from natural protein or enzymatic synthesis from specific substrates. With the introduction of recombinant DNA technology, it has become possible to apply more rational approaches to enzymatic synthesis of amino acids. Aspartase (L-aspartate ammonia-lyase) catalyzes the reversible deamination of L-aspartic acid to yield fumaric acid and ammonia. It is one of the most important industrial enzymes used to produce L-aspartic acid on a large scale. Here we described a novel method for [15N] L-aspartic synthesis from fumarate and ammonia (15NH4Cl) using a recombinant aspartase.


2021 ◽  
Vol 7 (3) ◽  
pp. 229
Author(s):  
Bettina Volford ◽  
Mónika Varga ◽  
András Szekeres ◽  
Alexandra Kotogán ◽  
Gábor Nagy ◽  
...  

β-Galactosidases of Mucoromycota are rarely studied, although this group of filamentous fungi is an excellent source of many industrial enzymes. In this study, 99 isolates from the genera Lichtheimia, Mortierella, Mucor, Rhizomucor, Rhizopus and Umbelopsis, were screened for their β-galactosidase activity using a chromogenic agar approach. Ten isolates from the best producers were selected, and the activity was further investigated in submerged (SmF) and solid-state (SSF) fermentation systems containing lactose and/or wheat bran substrates as enzyme production inducers. Wheat bran proved to be efficient for the enzyme production under both SmF and SSF conditions, giving maximum specific activity yields from 32 to 12,064 U/mg protein and from 783 to 22,720 U/mg protein, respectively. Oligosaccharide synthesis tests revealed the suitability of crude β-galactosidases from Lichtheimia ramosa Szeged Microbiological Collection (SZMC) 11360 and Rhizomucor pusillus SZMC 11025 to catalyze transgalactosylation reactions. In addition, the crude enzyme extracts had transfructosylation activity, resulting in the formation of fructo-oligosaccharide molecules in a sucrose-containing environment. The maximal oligosaccharide concentration varied between 0.0158 and 2.236 g/L depending on the crude enzyme and the initial material. Some oligosaccharide-enriched mixtures supported the growth of probiotics, indicating the potential of the studied enzyme extracts in future prebiotic synthesis processes.


2019 ◽  
Vol 48 (19) ◽  
pp. 6347-6352
Author(s):  
Di Wu ◽  
Jueting Zheng ◽  
Chenyong Xu ◽  
Dawei Kang ◽  
Wenjing Hong ◽  
...  

A new family of phosphindole fused ladder-type heteroacenes with a pyrrolo[3,2-b]pyrrole core were synthesized and characterized, which show good luminescence efficiency, high thermostability and tunable conductance.


2002 ◽  
Vol 18 (3) ◽  
pp. 629-634 ◽  
Author(s):  
C. Mateo ◽  
O. Abian ◽  
G. Fernandez-Lorente ◽  
J. Pedroche ◽  
R. Fernandez-Lafuente ◽  
...  

2001 ◽  
Vol 56 (11-12) ◽  
pp. 1022-1028 ◽  
Author(s):  
Kristina Uzunova ◽  
Anna Vassileva ◽  
Margarita Kambourova ◽  
Viara Ivanova ◽  
Dimitrina Spasova ◽  
...  

Abstract Enzyme production of newly isolated thermophilic inulin-degrading Bacillus sp. 11 strain was studied by batch cultivation in a fermentor. The achieved inulinase and invertase activi­ ties after a short growth time (4.25 h) were similar or higher compared to those reported for other mesophilic aerobic or anaerobic thermophilic bacterial producers and yeasts. The investigated enzyme belonged to the exo-type inulinases and splitted-off inulin, sucrose and raffinose. It could be used at temperatures above 65 °C and pH range 5.5-7.5. The obtained crude enzyme preparation possessed high thermostability. The residual inulinase and inver­ tase activities were 92-98% after pretreatment at 65 °C for 60 min in the presence of substrate inulin.


2021 ◽  
Vol 10 ◽  
Author(s):  
Folasade M. Olajuyigbe ◽  
Ademola K. Oduwole ◽  
Cornelius O. Fatokun

Background: Lignin confers rigidity on plant cell wall and poses a challenge to hydrolysis of cellulose, which makes production of biofuels from lignocellulose an overwhelming problem. This prompts continuous search for novel ligninolytic enzymes, especially, laccases for delignification of lignocellulose for improved saccharification of biomass. Objective: This study reports production, physicochemical properties and delignification efficiency of laccases from Penicillium and Trichoderma species on untreated wheat bran. Methods: Fungal laccases were produced using different agroresidues (wheat bran, coconut shell and palm kernel shell) as substrates in submerged fermentation. Best substrate for laccase production was determined. Physicochemical properties of crude enzymes and delignification efficiency of the laccases were determined on untreated wheat bran using pure laccase as control. Results: Wheat bran supported maximum laccase production from fungi under study. Highest laccase yield of 22.5 U/mL was obtained from P. spinulosum. Laccase from P. spinulosum was optimally active at pH 7.0 and 50 °C and exhibited remarkable high thermostability with 61.6% residual activity at 90 °C after 2 h incubation. The activity of the thermostable enzyme was enhanced in the presence of Cu2+. Biodelignification efficiency of cell-free extract from P. spinulosum, T. koningii, and P. restrictum on wheat bran were 95%, 81.5% and 63.5%, respectively. Surprisingly, a much lower delignification efficiency of 33.42% was obtained with commercial laccase from Trametes versicolor. Conclusion: The high thermostability and striking delignification efficiency of laccase from P. spinulosum make the enzyme a good bioresource for biodelignification of untreated lignocellulose for biofuel production.


Sign in / Sign up

Export Citation Format

Share Document