microbial sources
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 31)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
pp. 325-337
Author(s):  
Poonam Yadav ◽  
Anil K. Chauhan ◽  
Ram B. Singh ◽  
Shairy Khan ◽  
Ghazi Halabi

2021 ◽  
Vol 9 (12) ◽  
pp. 2481
Author(s):  
Rafida Razali ◽  
Haslina Asis ◽  
Cahyo Budiman

The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is considered the greatest challenge to the global health community of the century as it continues to expand. This has prompted immediate urgency to discover promising drug targets for the treatment of COVID-19. The SARS-CoV-2 viral proteases, 3-chymotrypsin-like protease (3CLpro) and papain-like cysteine protease (PLpro), have become the promising target to study due to their essential functions in spreading the virus by RNA transcription, translation, protein synthesis, processing and modification, virus replication, and infection of the host. As such, understanding of the structure and function of these two proteases is unavoidable as platforms for the development of inhibitors targeting this protein which further arrest the infection and spread of the virus. While the abundance of reports on the screening of natural compounds such as SARS-CoV-2 proteases inhibitors are available, the microorganisms-based compounds (peptides and non-peptides) remain less studied. Indeed, microorganisms-based compounds are also one of the potent antiviral candidates against COVID-19. Microbes, especially bacteria and fungi, are other resources to produce new drugs as well as nucleosides, nucleotides, and nucleic acids. Thus, we have compiled various reported literature in detail on the structures, functions of the SARS-CoV-2 proteases, and potential inhibitors from microbial sources as assistance to other researchers working with COVID-19. The compounds are also compared to HIV protease inhibitors which suggested the microorganisms-based compounds are advantageous as SARS-CoV2 proteases inhibitors. The information should serve as a platform for further development of COVID-19 drug design strategies.


2021 ◽  
Vol 19 ◽  
Author(s):  
Yassmin Isse Wehelie ◽  
Aishath Leesha Nasih ◽  
Ayaz Anwar ◽  
Ruqaiyyah Siddiqui ◽  
Sutherland Maciver ◽  
...  

: Pathogenic Acanthamoeba is responsible for causing serious eye and fatal brain infections. A successful prognosis remains elusive despite advances in chemotherapeutics and supportive care. Natural products of medicinal value remain a promising source for drug development due to their broad-spectrum antimicrobial activities. Herein, we discuss anti-Acanthamoebic properties of natural products originating from plants, marine, and microbial sources that could be exploited as potential avenue for drug discovery against infections caused by Acanthamoeba.


2021 ◽  
Vol 28 ◽  
Author(s):  
Hina Qaiser ◽  
Afshan Kaleem ◽  
Roheena Abdullah ◽  
Mehwish Iqtedar ◽  
Daniel C. Hoessli

: Lignocellulosic biomass, one of the most valuable natural resources, is abundantly present on earth. Being a renewable feedstock, it harbors a great potential to be exploited as a raw material, to produce various value-added products. Lignocellulolytic microorganisms hold a unique position regarding the valorization of lignocellulosic biomass as they contain efficient enzyme systems capable of degrading this biomass. The ubiquitous nature of these microorganisms and their survival under extreme conditions have enabled their use as an effective producer of lignocellulolytic enzymes with improved biochemical features crucial to industrial bioconversion processes. These enzymes can prove to be an exquisite tool when it comes to the eco-friendly manufacturing of value-added products using waste material. This review focuses on highlighting the significance of lignocellulosic biomass, microbial sources of lignocellulolytic enzymes and their use in the formation of useful products.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1627
Author(s):  
Ramesh Kumar Saini ◽  
Parchuri Prasad ◽  
Reddampalli Venkataramareddy Sreedhar ◽  
Kamatham Akhilender Naidu ◽  
Xiaomin Shang ◽  
...  

The omega−3 (n−3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) acid are well known to protect against numerous metabolic disorders. In view of the alarming increase in the incidence of chronic diseases, consumer interest and demand are rapidly increasing for natural dietary sources of n−3 PUFAs. Among the plant sources, seed oils from chia (Salvia hispanica), flax (Linum usitatissimum), and garden cress (Lepidium sativum) are now widely considered to increase α-linolenic acid (ALA) in the diet. Moreover, seed oil of Echium plantagineum, Buglossoides arvensis, and Ribes sp. are widely explored as a source of stearidonic acid (SDA), a more effective source than is ALA for increasing the EPA and DHA status in the body. Further, the oil from microalgae and thraustochytrids can also directly supply EPA and DHA. Thus, these microbial sources are currently used for the commercial production of vegan EPA and DHA. Considering the nutritional and commercial importance of n−3 PUFAs, this review critically discusses the nutritional aspects of commercially exploited sources of n−3 PUFAs from plants, microalgae, macroalgae, and thraustochytrids. Moreover, we discuss issues related to oxidative stability and bioavailability of n−3 PUFAs and future prospects in these areas.


Author(s):  
Krishika Sambyal ◽  
Rahul Vikram Singh

Abstract Background Penicillin G amidase/acylases from microbial sources is a unique enzyme that belongs to the N-terminal nucleophilic hydrolase structural superfamily. It catalyzes the selective hydrolysis of side chain amide/acyl bond of penicillins and cephalosporins whereas the labile amide/acyl bond in the β-lactam ring remains intact. Main body of abstract This review summarizes the production aspects of PGA from various microbial sources at optimized conditions. The minimal yield from wild strains has been extensively improved using varying strain improvement techniques like recombination and mutagenesis; further applied for the subsequent synthesis of 6-aminopenicillanic acid, which is an intermediate molecule for synthesis of a wide range of novel β-lactam antibiotics. Immobilization of PGA has also been attempted to enhance the durability of enzyme for the industrial purposes. Short conclusion The present review provides an emphasis on exploitation of E. coli to enhance the microbial production of PGA. The latest achievements in the production of recombinant enzymes have also been discussed. Besides E. coli, other potent microbial strains with PGA activity must be explored to enhance the yields. Graphical abstract


Chemosphere ◽  
2021 ◽  
pp. 132165
Author(s):  
Vinitha Ponnudurai ◽  
Ravikumar Rajarathinam ◽  
KirupaSankar Muthuvelu ◽  
Sivasubramanian Velmurugan ◽  
Radha Krishna Nalajala ◽  
...  

2021 ◽  
Vol 18 (2) ◽  
pp. 337-345
Author(s):  
Pankhuri Sharma ◽  
Shilpa Chapadgaonkar

α-amylase, an enzyme of industrial importance is used extensively in food, pharmaceutical, textile and detergent industries. Since, a substantial quantity of α-amylase isderived from microbial sources, manipulation of bacterial strain, fermentation conditions and media composition has a major effect on yield of enzyme. Bacillus amyloliqifaciens, obtained from MTCC culture collection was used to study the enhancement of α-amylase production using media concentration manipulation. Taguchi’s orthogonal array was designed for maximization of α-amylase output. The different media components selected as parameters to be optimized were calcium chloride, starch, tryptone, ammonium sulphate and glucose. The concentration of starch and tryptone demonstrated to have maximum effect on amylase production. The optimization strategy was successful in obtaining substantial increase in amylase production of about 2 folds as compared to the unoptimized medium.


Sign in / Sign up

Export Citation Format

Share Document