A novel approach toward thioester bond formation mediated by N,N’ -diisopropylcarbodiimide in water

2020 ◽  
Vol 196 (1) ◽  
pp. 6-12
Author(s):  
Nadia Fattahi ◽  
Najmeh Varnaseri ◽  
Ali Ramazani
ChemInform ◽  
2013 ◽  
Vol 44 (18) ◽  
pp. no-no
Author(s):  
Honglai Jiang ◽  
Aijun Lin ◽  
Chengjian Zhu ◽  
Yixiang Cheng

2019 ◽  
Author(s):  
Jennifer L. Scribner ◽  
Eric Vance ◽  
David S.W. Protter ◽  
William M. Sheeran ◽  
Elliott Saslow ◽  
...  

AbstractPair bond formation depends vitally on neuromodulatory signaling within the nucleus accumbens, but the neuronal dynamics underlying this behavior remain unclear. Using in vivo Ca2+ imaging in monogamous prairie voles, we found that pair bonding does not elicit differences in overall nucleus accumbens Ca2+ activity. Instead, we identified distinct neuronal ensembles in this region recruited during approach to either a partner or novel vole. The partner-approach neuronal ensemble increased in size following bond formation and differences in the size of approach ensembles for partner and novel voles predicts bond strength. In contrast, neurons comprising departure ensembles do not change over time and are not correlated with bond strength indicating that ensemble plasticity is specific to partner approach. Further, the neurons comprising partner and novel approach ensembles are non-overlapping while departure ensembles are more overlapping than chance, which may reflect another key feature of approach ensembles. We posit that the features of the partner approach ensemble and its expansion upon bond formation make it a potential key substrate underlying bond formation and maturation.HighlightsWe performed in vivo Ca2+ in the nucleus accumbens of pair bonded prairie volesOverall nucleus accumbens activity did not differ during partner versus stranger interactionDistinct approach neurons exist for the partner and for the strangerPartner-approach ensemble increases as partner preference emergesWe identify a putative neuronal substrate underlying bond formation and maturation


2019 ◽  
Vol 57 ◽  
pp. 17-30
Author(s):  
Christopher Narh ◽  
Charles Frimpong ◽  
Qu Fu Wei

In this research, unzipped sulfanilic acid inspired hydrophobic peptide tube was synthesis by increasing the polarity of sulfanilic acid through nucleophilic attachment of aniline which then provided two reactive sites at the S-terminus. These two sites were then attached with the N-terminal of valine and alanine respectively at an intensity of 1000-1600 of 11 2θ (°). Through π-π stacking at the side chains, the opened ended peptide was linearly arranged to form the unzipped tube. Fourier transform infrared spectroscopy (FTIR) confirm the amine bond formation whiles X-ray diffraction test results confirmed D-spacing 7.36 and 4.44 corresponding 2θ (°)12 and 19.97 respectively whiles the torsion angles (Ø2) conformations was between-150.5°and-169.2° and-2 between-129.0° and-150.6°. The Thermogravimetric analysis result showed an increase in the rigidity of the bond with an increasing intensity. Finally, Differential scanning calorimetry (DSC) test was carried out to confirm the crystallinity of the structure. Keywords: Sulfanilic acid, hydrophobic Peptide, Unzipped tubes, Nanomaterial


Nature ◽  
2010 ◽  
Vol 463 (7283) ◽  
pp. 906-912 ◽  
Author(s):  
Shaun K. Olsen ◽  
Allan D. Capili ◽  
Xuequan Lu ◽  
Derek S. Tan ◽  
Christopher D. Lima

RSC Advances ◽  
2015 ◽  
Vol 5 (100) ◽  
pp. 82199-82207 ◽  
Author(s):  
S. M. Abdul Shakoor ◽  
Sunita Choudhary ◽  
Kiran Bajaj ◽  
Manoj Kumar Muthyala ◽  
Anil Kumar ◽  
...  

An efficient and recyclable imidazolium-supported benzotriazole reagent (Im-CH2-BtH) as a novel synthetic auxiliary has been synthesized and explored for its carboxyl group activating capability for the synthesis of amides, esters and thioesters in water.


2021 ◽  
Author(s):  
Fulin Zhang ◽  
Ruihua Zhao ◽  
Lei Zhu ◽  
Yinghua Yu ◽  
Saihu Liao ◽  
...  

<b>Isoindolinone is a class of versatile <i>N</i>-heterocycles embedded in many bioactive molecules and natural products. The invention of new methods to synthesize these heterocyclic compounds with easily accessible chemicals is always attractive. Herein, a conceptually novel approach to access this bicyclic system via isonitrile insertion enabled 1,4-pallaidum shift is described. Compared with conventional isonitrile participated C-H bond activation, both carbon and nitrogen atoms in isonitrile moiety are engaged in new bond formation. Notably, two different isoindolinones can be obtained selectively by switching the bases employed. Mechanistic studies including DFT calculations have shed lights on the reaction mechanism and explained the selectivity led to different products. Moreover, the power of current benzolactamization is further demonstrated by providing concise routes to key intermediates of indoprofen, indobufen, aristolactams, lennoxamine and falipamil.</b>


2019 ◽  
Vol 116 (31) ◽  
pp. 15475-15484 ◽  
Author(s):  
Zachary S. Hann ◽  
Cheng Ji ◽  
Shaun K. Olsen ◽  
Xuequan Lu ◽  
Michaelyn C. Lux ◽  
...  

The ubiquitin (Ub) and Ub-like (Ubl) protein-conjugation cascade is initiated by E1 enzymes that catalyze Ub/Ubl activation through C-terminal adenylation, thioester bond formation with an E1 catalytic cysteine, and thioester bond transfer to Ub/Ubl E2 conjugating enzymes. Each of these reactions is accompanied by conformational changes of the E1 domain that contains the catalytic cysteine (Cys domain). Open conformations of the Cys domain are associated with adenylation and thioester transfer to E2s, while a closed conformation is associated with pyrophosphate release and thioester bond formation. Several structures are available for Ub E1s, but none has been reported in the open state before pyrophosphate release or in the closed state. Here, we describe the structures ofSchizosaccharomyces pombeUb E1 in these two states, captured using semisynthetic Ub probes. In the first, with a Ub-adenylate mimetic (Ub-AMSN) bound, the E1 is in an open conformation before release of pyrophosphate. In the second, with a Ub-vinylsulfonamide (Ub-AVSN) bound covalently to the catalytic cysteine, the E1 is in a closed conformation required for thioester bond formation. These structures provide further insight into Ub E1 adenylation and thioester bond formation. Conformational changes that accompany Cys-domain rotation are conserved for SUMO and Ub E1s, but changes in Ub E1 involve additional surfaces as mutational and biochemical analysis of residues within these surfaces alter Ub E1 activities.


Sign in / Sign up

Export Citation Format

Share Document