Hard Machining of Stainless Steel Using Wiper Coated Carbide: Tool Life and Surface Integrity

2010 ◽  
Vol 25 (6) ◽  
pp. 370-377 ◽  
Author(s):  
Denni Kurniawan ◽  
Noordin Mohd. Yusof ◽  
Safian Sharif
2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


Wear ◽  
2020 ◽  
Vol 450-451 ◽  
pp. 203259
Author(s):  
Shahereen Chowdhury ◽  
Bipasha Bose ◽  
Abul Fazal M. Arif ◽  
Stephen C. Veldhuis

2014 ◽  
Vol 564 ◽  
pp. 566-571
Author(s):  
K. Kamdani ◽  
Sulaiman Hasan ◽  
Mohd Amri Lajis

Inconel 718 is a registered trademark of Special Metals Corporation that refers to a family of austenitic nickel-chromium-based super alloys. This material usually being used or operate in high temperature and extreme condition like aerospace industry, turbocharger rotors and seals. This research presents an experimental study of the cutting force variation, surface roughness, tool life and tool wear in end milling Inconel 718. The experimental results showed that flank wear was the predominant failure mode affecting tool life for TiAlN and TiN coated carbide tool. TiAlN is the better coated tool than TiN because it produce better surface finish and resultant force. Feed rate is one of the parameter that effecting results in this experiment. The higher feed rate will shorten the life of the tool. Although for the cutting condition, the situation is quite different where the proper cutting speed will maintain the tool life and tool wear for cutting tool. The overall study shows that TiAlN coated carbide tool with cutting speed 100 m/min, depth of cut 0.5 mm and feed rate 0.1 mm/tooth is the optimum parameter in this experiment.


2014 ◽  
Vol 800-801 ◽  
pp. 526-530 ◽  
Author(s):  
Shu Cai Yang ◽  
Yu Hua Zhang ◽  
Quan Wan ◽  
Jian Jun Chen ◽  
Chuang Feng

The milling experiments were carried out using TiAlN and PCD coated carbide tools in high speed milling Ti6Al4V to compare and analyze tool wear and tool life of the two kinds of coating carbide tools. In addition, the effect of cooling and lubricating on tool wear is also studied. The results showed that fluid environment is not suitable for milling Ti6Al4V. PCD coating carbide tool can effectively increase the life of tool in high speed milling of Ti6Al4V.


Sign in / Sign up

Export Citation Format

Share Document