A Study of the Effect of Tool Pin Profiles on Tensile Strength of Welded Joints Produced Using Friction Stir Welding Process

2011 ◽  
Vol 26 (9) ◽  
pp. 1111-1116 ◽  
Author(s):  
C. N. Suresha ◽  
B. M. Rajaprakash ◽  
Sarala Upadhya
2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


Measurement ◽  
2018 ◽  
Vol 129 ◽  
pp. 112-118 ◽  
Author(s):  
Noor Zaman Khan ◽  
Arshad Noor Siddiquee ◽  
Zahid A. Khan

2011 ◽  
Vol 415-417 ◽  
pp. 1140-1146 ◽  
Author(s):  
R. Palanivel ◽  
P. Koshy Mathews ◽  
M. Balakrishnan ◽  
I. Dinaharan ◽  
N. Murugan

Aluminium alloys generally has low weldability by traditional fusion welding process. The development of the Friction Stir Welding (FSW) has provided an alternative improved way of producing aluminium joints, in a faster and reliable manner. FSW process has several advantages, in particular the possibility to weld dissimilar aluminium alloys. This study focuses on the behavior of tensile strength of dissimilar joints of AA6351-T6 alloy to AA5083-H111 alloy produced by friction stir welding was analysed. Five different tool pin profile such as Straight Square (SS), Tapered Square (TS), Straight Hexagon (SH), Straight Octagon (SO) and Tapered Octagon (TO) with three different axial force (1tonne, 1.5tonne, 2 tonne) have been used to weld the joints. The effect of pin profiles and axial force on tensile properties and material flow behaviour of the joint was analyzed and it was found that the straight square pin profile with 1.5 tonne produced better tensile strength then other tool pin profile and axial force.


Author(s):  
R Palanivel ◽  
RF Laubscher ◽  
S Vigneshwaran ◽  
I Dinaharan

Friction stir welding is a solid-state welding technique for joining metals such as aluminum alloys quickly and reliably. This article presents a design of experiments approach (central composite face–centered factorial design) for predicting and optimizing the process parameters of dissimilar friction stir welded AA6351–AA5083. Three weld parameters that influence weld quality were considered, namely, tool shoulder profile (flat grooved, partial impeller and full impeller), rotational speed and welding speed. Experimental results detailing the variation of the ultimate tensile strength as a function of the friction stir welding process parameters are presented and analyzed. An empirical model that relates the friction stir welding process parameters and the ultimate tensile strength was obtained by utilizing a design of experiments technique. The models developed were validated by an analysis of variance. In general, the full impeller shoulder profile displayed the best mechanical properties when compared to the other profiles. Electron backscatter diffraction maps were used to correlate the metallurgical properties of the dissimilar joints with the joint mechanical properties as obtained experimentally and subsequently modeled. The optimal friction stir welding process parameters, to maximize ultimate tensile strength, are identified and reported.


Author(s):  
Senthil Kumar Velukkudi Santhanam ◽  
Lokesh Rathinaraj ◽  
Rathinasuriyan Chandran ◽  
Shankar Ramaiyan

Friction stir welding (FSW) is a solid-state welding process which is used to join high-strength aircraft aluminum alloys and other metallic alloys which are difficult to weld by conventional fusion welding. In this paper, AA6063-O alloy of 6mm thickness was taken and friction stir welded under the water in order to improve the joint properties. The process parameters considered as rotational speed, welding speed and tool pin profiles (cylindrical, threaded and tapered) are optimized with multi response characteristics including hardness, tensile strength and % elongation. In order to solve a multi response optimization problem, the traditional Taguchi approach is insufficient. To overcome this constraint, a multi criteria decision making approach, namely, techniques for order preference by similarity to ideal solution (TOPSIS) is applied in the present study [13]. The optimal result indicates that the multi response characteristics of the AA6063-O during the submerged friction stir welding process can be enhanced through the TOPSIS approach. The Analysis of Variance (ANOVA) was carried out to investigate the significant parameter for the submerged friction stir welding process. The mechanical properties of the submerged FSW are compared with normal FSW joints.


Sign in / Sign up

Export Citation Format

Share Document