Improved magnetorheological finishing process with arc magnet for borosilicate glass

Author(s):  
Xulong Zhuang ◽  
Mingming Lu ◽  
Jiakang Zhou ◽  
Jieqiong Lin ◽  
Weixing Li
Author(s):  
Mayank Srivastava ◽  
Pulak M Pandey

In the present work, a novel hybrid finishing process that combines the two preferred methods in industries, namely, chemical-mechanical polishing (CMP) and magneto-rheological finishing (MRF), has been used to polish monocrystalline silicon wafers. The experiments were carried out on an indigenously developed double-disc chemical assisted magnetorheological finishing (DDCAMRF) experimental setup. The central composite design (CCD) was used to plan the experiments in order to estimate the effect of various process factors, namely polishing speed, slurry flow rate, percentage CIP concentration, and working gap on the surface roughness ([Formula: see text]) by DDCAMRF process. The analysis of variance was carried out to determine and analyze the contribution of significant factors affecting the surface roughness of polished silicon wafer. The statistical investigation revealed that percentage CIP concentration with a contribution of 30.6% has the maximum influence on the process performance followed by working gap (21.4%), slurry flow rate (14.4%), and polishing speed (1.65%). The surface roughness of polished silicon wafers was measured by the 3 D optical profilometer. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were carried out to understand the surface morphology of polished silicon wafer. It was found that the surface roughness of silicon wafer improved with the increase in polishing speed and slurry flow rate, whereas it was deteriorated with the increase in percentage CIP concentration and working gap.


2020 ◽  
Vol 59 (01) ◽  
pp. 1
Author(s):  
Hang Yang ◽  
Changguo Yan ◽  
Yunfei Zhang ◽  
Wen Huang

2018 ◽  
Vol 29 (11) ◽  
pp. 2456-2464 ◽  
Author(s):  
Neha Khatri ◽  
Suman Tewary ◽  
Xavier J Manoj ◽  
Harry Garg ◽  
Vinod Karar

Silicon mirrors are essential for guiding the X-ray beam and focusing it to a specific location. These mirrors using total internal reflection require super smooth surface finish due to small wavelength of X-ray. Magnetorheological finishing is a computer-controlled technique used in the production of high-quality optical lenses. This process utilizes polishing slurries based on magnetorheological fluids, whose viscosity changes with the change in magnetic field. In this work, polishing potential of silicon mirrors by magnetorheological finishing process is examined to achieve nanometric surface finish for X-ray applications. The individual effect of parameters such as magnetizing current, working gap, rotational speed on surface roughness is investigated, and optimized parameters are identified. To investigate the physical essence underlying magnetorheological finishing process, the molecular dynamics simulations are used. Molecular dynamics simulation is used to study the atomic-scale removal mechanism of single-crystalline silicon in magnetorheological finishing process and attention is paid to study the effect of gap between the tool and the workpiece on surface quality. The outcome is promising and the final surface roughness achieved is as low as 6.4 nm. The surface quality is analyzed in terms of arithmetic roughness, power spectral density, and image analysis of scanning electron microscopy for uniform evaluation.


2009 ◽  
Vol 49 (5) ◽  
pp. 407-418 ◽  
Author(s):  
Bongsu Jung ◽  
Kyung-In Jang ◽  
Byung-Kwon Min ◽  
Sang Jo Lee ◽  
Jongwon Seok

Sign in / Sign up

Export Citation Format

Share Document