Analysis of Energy Use and Input Costs for Irrigation in Field Crop Production: A Case Study for the Konya Plain of Turkey

2009 ◽  
Vol 33 (7) ◽  
pp. 757-771 ◽  
Author(s):  
Ramazan Topak ◽  
Bilal Acar ◽  
Nuh Ugurlu
Author(s):  
Hemchandra Saikia ◽  
B. C. Bhowmick ◽  
R. A. Halim

Energy is a very key component in every sphere of our life, be it a crop production or any other field. Again seasonality is a very common phenomenon in crop production and due to this there exist slacks and peak season of various sources of energy use and production. Present study was conducted in Golaghat district of Assam to highlight the month-wise energy use and also to know the energy output-input and benefit-cost ratio. Sampling method used for the study was Three Stage Sampling method. Result from the study revealed that the cropping intensity of the study area was 119.57 per cent. The most dominant energy consuming months were July, August, November, and December using 30.64, 18.90, 13.12 and 7.65 per cent of the total energy used in crop production in per hectare of gross cropped area. The energy output-input and benefit –cost ratio of the study area were 10.84 and 1.64 respectively. From the study it was found that there is vast scope to boost the production, productivity and profitability of crop production in study area by providing all the necessary infrastructures in due space and time in adequate amount and proper quality.


Food Research ◽  
2020 ◽  
Vol 4 (S5) ◽  
pp. 34-39
Author(s):  
Liyana N.A. ◽  
D.E. Pebrian

Preservation of energy resources for crop production is a crucial act in an endeavour to make agriculture more sustainable. In response to that matter, this study aims to analyse and evaluate energy use pattern and its economic in rockmelon (Cucumis melo) production in Malaysian farms. Face-to-face interviews with the sampled farmers were employed to collect the data through a case study in Klang district, Selangor state of Malaysia. The collected data was then analysed using mathematical operations and spreadsheet software. The results indicated that the total energy inputs in rockmelon were 4475.62 MJ/ha. The highest portion, which accounted for 73.29% of the total energy inputs were consumed by fertilizers, while the lowest portion was used for seed (0.01%). The total energy inputs were formed from 85.12% indirect energy and 14.88% direct energy; and 85% non-renewable energy and 15% renewable energy. The net energy and energy productivity values were 11332.85 MJ/ha and 2.81 kg/MJ, respectively. The farmers gained 29.94% profit margin from their farms business. The ratio of energy output -inputs in rockmelon production was 5.34. As the ratio was much greater than 1, thus, conclusively, the energy inputs used by the farmers in the process of rockmelon production was highly efficient.


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanjin Liu ◽  
Giraldo Eugenio

Cultured bacteria addition is one of the technologies used for odor control and FOG (fat, oil, and grease) removal in wastewater collection systems. This study investigated the efficiency of bacterial addition on wastewater odor control by conducting a set of full scale trials in a 60,000 cubic meter per day system for a period of two years. The objectives of this study were: (i) to identify factors that could impact wastewater treatment plant (WWTP) operations due to the effect of bacterial addition in the collection system, (ii) to estimate/understand the level of those impacts, and (iii) to present some interesting findings from the completed case study. The plant operation data before and during the bacterial addition were reviewed. The application of the cultured bacteria presented in the study was found to have significant impacts on the operation of the WWTP in terms of influent biological oxygen demand (BOD) and total suspended solids (TSS) loading, primary settling, sludge production, energy use, dissolved sulfides concentration, and methane production.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 230
Author(s):  
Hossein Omrany ◽  
Veronica Soebarto ◽  
Jian Zuo ◽  
Ruidong Chang

This paper aims to propose a comprehensive framework for a clear description of system boundary conditions in life cycle energy assessment (LCEA) analysis in order to promote the incorporation of embodied energy impacts into building energy-efficiency regulations (BEERs). The proposed framework was developed based on an extensive review of 66 studies representing 243 case studies in over 15 countries. The framework consists of six distinctive dimensions, i.e., temporal, physical, methodological, hypothetical, spatial, and functional. These dimensions encapsulate 15 components collectively. The proposed framework possesses two key characteristics; first, its application facilitates defining the conditions of a system boundary within a transparent context. This consequently leads to increasing reliability of obtained LCEA results for decision-making purposes since any particular conditions (e.g., truncation or assumption) considered in establishing the boundaries of a system under study can be revealed. Second, the use of a framework can also provide a meaningful basis for cross comparing cases within a global context. This characteristic can further result in identifying best practices for the design of buildings with low life cycle energy use performance. Furthermore, this paper applies the proposed framework to analyse the LCEA performance of a case study in Adelaide, Australia. Thereafter, the framework is utilised to cross compare the achieved LCEA results with a case study retrieved from literature in order to demonstrate the framework’s capacity for cross comparison. The results indicate the capability of the framework for maintaining transparency in establishing a system boundary in an LCEA analysis, as well as a standardised basis for cross comparing cases. This study also offers recommendations for policy makers in the building sector to incorporate embodied energy into BEERs.


2021 ◽  
Vol 13 (9) ◽  
pp. 5234
Author(s):  
Mustafa S. Al-Tekreeti ◽  
Salwa M. Beheiry ◽  
Vian Ahmed

Numerous decision support systems have been developed to address the decision-making process in organizations. However, there are no developed mechanisms to track commitment down the line to the decisions made by corporate leaders. This paper is a portion of a study that establishes a framework for a comprehensive metric system to assess commitment to Sustainable Development (SD) decisions down the line in capital projects, and sets the groundwork for further development of performance indicators for SD outcomes. This ultimately leads to investigating the relationship between commitment to corporate decisions and better project performance in SD parameters. Hence, this study explores the literature to extract relevant parameters that reflect the degree of the project participants’ commitment to SD decisions and to develop commitment indicators. The study created then validated an index to track this commitment along the project stages: the Sustainable Development Commitment Tracking Tool (SDCTT). The SDCTT was tested on an infrastructure project case study. In this paper, techniques relevant to the first stage of projects (planning and definition) are presented. The SDCTT is the groundwork for the future development of performance indicators for SD outcomes, and within the postulated model should ultimately contribute towards reducing project waste, energy use, and carbon emissions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Arif Budiyanto ◽  
Muhammad Hanzalah Huzaifi ◽  
Simon Juanda Sirait ◽  
Putu Hangga Nan Prayoga

AbstractSustainable development of container terminals is based on energy efficiency and reduction in CO2 emissions. This study estimated the energy consumption and CO2 emissions in container terminals according to their layouts. Energy consumption was calculated based on utility data as well as fuel and electricity consumptions for each container-handling equipment in the container terminal. CO2 emissions were estimated using movement modality based on the number of movements of and distance travelled by each container-handling equipment. A case study involving two types of container terminal layouts i.e. parallel and perpendicular layouts, was conducted. The contributions of each container-handling equipment to the energy consumption and CO2 emissions were estimated and evaluated using statistical analysis. The results of the case study indicated that on the CO2 emissions in parallel and perpendicular layouts were relatively similar (within the range of 16–19 kg/TEUs). These results indicate that both parallel and perpendicular layouts are suitable for future ports based on sustainable development. The results can also be used for future planning of operating patterns and layout selection in container terminals.


Sign in / Sign up

Export Citation Format

Share Document