Memory Effects in Monodomain Liquid Crystal Elastomers Produced in Magnetic Fields

Author(s):  
P. M S Roberts ◽  
G. R Mitchell ◽  
F. J Davis
Author(s):  
Salvador Pané ◽  
Pedro Wendel-Garcia ◽  
Yonca Belce ◽  
Xiang-Zhong Chen ◽  
Josep Puigmartí-Luis

Abstract Purpose of Review The increasing number of contributions in the field of small-scale robotics is significantly associated with the progress in material science and process engineering during the last half century. With the objective of integrating the most optimal materials for the propulsion of these motile micro- and nanosystems, several manufacturing strategies have been adopted or specifically developed. This brief review covers some recent advances in materials and fabrication of small-scale robots with a focus on the materials serving as components for their motion and actuation. Recent Findings Integration of a wealth of materials is now possible in several micro- and nanorobotic designs owing to the advances in micro- and nanofabrication and chemical synthesis. Regarding light-driven swimmers, novel photocatalytic materials and deformable liquid crystal elastomers have been recently reported. Acoustic swimmers are also gaining attention, with several prominent examples of acoustic bubble-based 3D swimmers being recently reported. Magnetic micro- and nanorobots are increasingly investigated for their prospective use in biomedical applications. The adoption of different materials and novel fabrication strategies based on 3D printing, template-assisted electrodeposition, or electrospinning is briefly discussed. Summary A brief review on fabrication and powering of small-scale robotics is presented. First, a concise introduction to the world of small-scale robotics and their propulsion by means of magnetic fields, ultrasound, and light is provided. Recent examples of materials and fabrication methodologies for the realization of these devices follow thereafter.


2015 ◽  
Vol 1123 ◽  
pp. 46-54
Author(s):  
Warsono ◽  
Y. Yusuf ◽  
Pekik Nurwantoro ◽  
Kamsul Abraha

The effect of magnetic fields on the swelling of liquid crystal elastomers (LCE) dissolved in liquid crystal (LC) solvent have been studied. The Flory-Huggins model used to calculate the free energy of an isotropic mixing and the Maier-Saupe model used to calculate the free energy of a nematic mixing. Numerical integration method used to calculate the orientational order parameter and the total free energy of system (consists of : nematic free energy, elastic free energy, isotropic mixing free energy and magnetic free energy) and the calculation results graphed as a function of temperatures for various magnetic fields and as function of magnetic fields for various of temperatures. We find that the magnetic field shifts the transition points towards higher temperatures, increases the energy transition, and induces an isotropic phase to paranematic phase.


1991 ◽  
Vol 1 (10) ◽  
pp. 1253-1261 ◽  
Author(s):  
C. H. Legge ◽  
F. J. Davis ◽  
G. R. Mitchell

2021 ◽  
pp. 2104702
Author(s):  
Kyohei Hisano ◽  
Seiya Kimura ◽  
Kyosun Ku ◽  
Tomoki Shigeyama ◽  
Norihisa Akamatsu ◽  
...  

Soft Matter ◽  
2021 ◽  
Author(s):  
Angel Martinez ◽  
Arul Clement ◽  
Junfeng Gao ◽  
Julia Kocherzat ◽  
Mohsen Tabrizi ◽  
...  

The effect of chain extender structure and composition on the properties of liquid crystal elastomers (LCE) is presented. Compositions are optimized to design work-dense liquid metal LCE composites that are operated with 100 mW power.


Soft Matter ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 3128-3136
Author(s):  
Suzuka Okamoto ◽  
Shinichi Sakurai ◽  
Kenji Urayama

Stretching angle for a main-chain liquid crystal elastomer has pronounced effects on the width of the stress plateau as well as the ultimate elongation, while it has no effect on the plateau height.


2021 ◽  
Author(s):  
Ling Chen ◽  
Hari Bisoyi ◽  
Yinliang Huang ◽  
Shuai Huang ◽  
Meng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document