Evaluation of pavement surface texture at the network level

2018 ◽  
Vol 34 (1) ◽  
pp. 87-98
Author(s):  
Shuvo Islam ◽  
Mustaque Hossain ◽  
Richard Miller
1986 ◽  
Vol 108 (3) ◽  
pp. 455-461
Author(s):  
J. C. Wambold ◽  
J. J. Henry

It is generally agreed that the friction between a tire and a wet pavement (skid resistance) is controlled by the surface texture characteristics. Therefore, by measuring the relevant parameters describing texture, or by measuring a physical process dependent on texture, regression techniques can be used to relate skid resistance to the chosen texture parameter or process. Two scales of texture are of particular importance: microtexture (small-scale asperities) and macrotexture (large-scale asperities). This paper describes work performed to: (1) review candidate macrotexture and microtexture measurement methods that can be made at highway speeds (at or about 64 km/h [40 mph]), which are presently used or have potential for use in pavement texture measurement; (2) design and build a prototype of the most promising method; and (3) evaluate the effects of pavement surface texture on skid resistance. A prototype noncontact vision system that makes texture measurements at highway speeds was developed, and several improvements were made to upgrade the system to provide an improved prototype. Both hardware and software enhancements have yielded a texture measurement system that can obtain pavement macrotexture data in a fast, efficient, and reliable way.


Wear ◽  
1982 ◽  
Vol 83 (2) ◽  
pp. 351-368 ◽  
Author(s):  
James C. Wambold ◽  
John Jewett Henry ◽  
Rudolph R. Hegmon

Author(s):  
Timothy Miller ◽  
Daniel Swiertz ◽  
Laith Tashman ◽  
Nader Tabatabaee ◽  
Hussain U. Bahia

This paper presents improved analysis methods for characterizing asphalt pavement surface texture and focuses on the use of laser profiling techniques to estimate friction characteristics. Derived from signal processing theories, texture spectral analysis methods show promise for improving characterization of the tire–pavement interface. Texture parameters measured with spectral analysis techniques represent a means for quantifying surface properties. Current methods to analyze frictional properties rely on the mean profile depth (MPD) and mean texture depth (MTD) texture parameters. Although these parameters are used widely, they do not capture the range and distribution of surface asperities on the pavement surface. Knowing the distribution of surface asperities is critical for assessing friction characteristics. Thus, texture spectral analysis methods are anticipated to improve on the MPD and MTD parameters by capturing relevant texture-level distributions. This study investigates the applicability of laser profiling systems for measuring pavement surface texture and subsequent relationships to friction. Models accounting for aggregate and mixture properties are developed and related to texture parameters through analysis of constructed field sections and corresponding laboratory samples. Results indicate that stationary laser profiling systems can capture the microtexture and macrotexture spectrum and suggest that a comprehensive friction characterization of asphalt mixtures can be obtained in a laboratory setting. With this analysis system, it is believed that asphalt mixture designers will have an improved tool by which to estimate pavement surface texture and frictional properties.


2021 ◽  
Vol 1202 (1) ◽  
pp. 012026
Author(s):  
Audrius Vaitkus ◽  
Dovydas Skrodenis ◽  
Ovidijus Šernas ◽  
Viktoras Vorobjovas

Abstract Tire/pavement noise is one of the biggest environmental problems caused by the contact between the car tire and the pavement surface. It is known that porous asphalt (PA) pavements has good properties in noise absorption, however these mixtures could also solve another important problem which appear on roads – aquaplaning. This phenomenon reduces traffic safety and driving comfort. Aquaplaning appears when tires become separated from the pavement surface by thin water film and the ability to increase braking force or control the vehicle motion is almost entirely lost. Although, PA pavements have relatively low durability properties. This research aims analyse surface texture and permeability characteristics of aquaplaning resistant asphalt pavements. Four different mixtures with different largest particle size (AT 5, AT 8, AT 11 and AT 16) were tested. Large-scale laboratory testing was performed to evaluate their surface texture and permeability properties The research revealed, that mixtures with 8 % activated mineral limestone powder (AMLP) showed better mechanical and physical properties than comparing to other mixtures with 4 % AMLP and 4 % granite screenings or just 4 % AMLP.


2011 ◽  
Vol 460-461 ◽  
pp. 66-70
Author(s):  
Chen Ning

In order to study the surface characteristics of exposed-aggregate cement concrete pavement, the measurement mechanism of surface texture depth was analyzed by using digital image technique. Based on the principle of least square and Table curve 3D software, two-dimensional digital image of road surface was reconstructed into three-dimensional space surface and a method of evaluating and measuring pavement surface texture depth was put forward. With this method, digital image samples were calculated and the results were compared with the results of conventional measurement method. The results indicate that exposed-aggregate cement concrete pavement has excellent road characteristics; there is a good correlation between the digital image technique and the traditional sand patch method and the relative error is less than 7 percent. Thus, the digital image technique is feasible in evaluating and measuring pavement surface texture depth.


Author(s):  
Rebekka Kienle ◽  
Wolfram Ressel ◽  
Tobias Götz ◽  
Markus Weise

Due to their influence on traffic safety, skid resistance and drainage are important surface properties of a road and their optimization and durability is still focus of ongoing research. Under wet conditions, these two characteristics are connected as a wetted road cannot provide a sufficient skid resistance without a working drainage system. The wet friction is mainly affected by the road surface geometry and the water depth. Herein, we describe a novel numerical approach to study the influence of the surface texture – mainly the microtexture – on the wet friction coefficient. This method is based on the hysteresis effect, which is the main friction force on rough surfaces under wet conditions. We therefore use an already established friction model for dry surfaces and extend its range of application by an additional consideration of water films. A drainage model has been developed to calculate the water film thickness for a given road surface and geometry (pavement surface runoff model) as systematic measurements of water film thicknesses in situ are difficult. The water depth determines the number of contact points between the pavement and the tyre. Based on three-dimensional measurements of a surface texture, the friction coefficient is calculated. By this newly developed model approach, it is possible to identify the main factors influencing wet skid resistance in regard to the pavement surface microtexture and the water film thickness.


Sign in / Sign up

Export Citation Format

Share Document