Rectified and non-linear voltage-dependent membrane conductance of centrosymmetric oligoester bolaamphiphiles

2017 ◽  
Vol 30 (2) ◽  
pp. 146-157 ◽  
Author(s):  
Ye Zong ◽  
Thomas M. Fyles
1985 ◽  
Vol 4 (4) ◽  
pp. 143-146 ◽  
Author(s):  
C. G. Steyn ◽  
J. D. Van Wyk

A novel suggestion for a non-linear turn-off snubber is simulated experimentally with linear capacitors and an auxiliary power electronic switch. Thus the principle and advantages of this concept is partly illustrated, particularly concerning the important reduction of reactive stored energy for the same switching dissipation in the main power device. The full advantages of the concept will be realised when a snubber capacitor with non-linear, voltage dependent dielectric is used. The work on this part of the solution is being continued.


1994 ◽  
Vol 266 (3) ◽  
pp. C709-C719 ◽  
Author(s):  
S. M. Simasko

The role of Na+ in the expression of membrane potential activity in the clonal rat pituitary cell line GH3 was investigated using the perforated patch variation of patch-clamp electrophysiological techniques. It was found that replacing bath Na+ with choline, tris(hydroxymethyl)aminomethane (Tris), or N-methyl-D-glucamine (NMG) caused the cells to hyperpolarize 20-30 mV. Tetrodotoxin had no effect. The effects of the Na+ substitutes could not be explained by effects on potassium or calcium currents. Although all three Na+ substitutes suppressed voltage-dependent calcium current by 10-20%, block of voltage-dependent calcium current by nifedipine or Co2+ did not result in hyperpolarization of the cells. There was no effect of the Na+ substitutes on voltage-dependent potassium currents. In contrast, all three Na+ substitutes influenced calcium-activated potassium currents [IK(Ca)], but only at depolarized potentials. Choline consistently suppressed IK(Ca), whereas Tris and NMG either had no effect or slightly increased IK(Ca). These effects on IK(Ca) also cannot explain the hyperpolarization induced by removing bath Na+. Choline always hyperpolarized cells yet suppressed IK(Ca). Furthermore, removing bath Na+ caused an increase in cell input resistance, an observation consistent with the loss of a membrane conductance as the basis of the hyperpolarization. Direct measurement of background currents revealed a 12-pA inward current at -84 mV that was lost upon removing bath Na+. These results suggest that this background sodium conductance provides the depolarizing drive for GH3 cells to reach the threshold for firing calcium-dependent action potentials.


1994 ◽  
Vol 71 (6) ◽  
pp. 2151-2160 ◽  
Author(s):  
K. W. Yoon

1. The mechanism of the time-dependent decline in gamma-amino-butyric acid (GABA)-induced chloride conductance, referred to as desensitization, was studied in dissociated rat hippocampal cell culture with the use of a whole-cell voltage-clamp recording. 2. In most cells the gradual decline of membrane conductance was dependent simultaneously on the agonist concentration and membrane voltage. Even in the continued presence of GABA, desensitization could be prevented by holding the membrane potential > 0 mV in a near symmetrical chloride gradient across the cell membrane. 3. The “recovery” from desensitization occurred after removal of the agonist with a time constant of approximately 35 s. The rate of recovery from desensitization was independent of membrane voltage. 4. When the membrane potential was jumped from a negative to a positive membrane potential during steady state of desensitization, the GABA-induced chloride conductance gradually “relaxed” to the undesensitized state. This phenomenon of gradual increase in chloride conductance or “reactivation” from desensitization was both voltage and agonist dependent. 5. The process of recovery of the GABA ionophore from the desensitized state is distinct from the process of reactivation, which is dependent both on the voltage and agonist. 6. These observations suggest that the ligand-bound GABA receptor has two alternate states, i.e., permissive (activated) and desensitized. The rates of transition between these two states are voltage dependent.


2019 ◽  
Author(s):  
Daniel E. Hurtado ◽  
Javiera Jilberto ◽  
Grigory Panasenko

AbstractGap junctions are key mediators of the intercellular communication in cardiac tissue, and their function is vital to sustain normal cardiac electrical activity. Conduction through gap junctions strongly depends on the hemichannel arrangement and transjunctional voltage, rendering the intercellular conductance highly non-Ohmic. Despite this marked non-linear behavior, current tissue-level models of cardiac conduction are rooted on the assumption that gap-junctions conductance is constant (Ohmic), which results in inaccurate predictions of electrical propagation, particularly in the low junctional-coupling regime observed under pathological conditions. In this work, we present a novel non-Ohmic multiscale (NOM) model of cardiac conduction that is suitable for tissue-level simulations. Using non-linear homogenization theory, we develop a conductivity model that seamlessly upscales the voltage-dependent conductance of gap junctions, without the need of explicitly modeling gap junctions. The NOM model allows for the simulation of electrical propagation in tissue-level cardiac domains that accurately resemble that of cell-based microscopic models for a wide range of junctional coupling scenarios, recovering key conduction features at a fraction of the computational complexity. A unique feature of the NOM model is the possibility of upscaling the response of non-symmetric gap-junction conductance distributions, which result in conduction velocities that strongly depend on the direction of propagation, thus allowing to model the normal and retrograde conduction observed in certain regions of the heart. We envision that the NOM model will enable organ-level simulations that are informed by sub- and inter-cellular mechanisms, delivering an accurate and predictive in-silico tool for understanding the heart function.Author summaryThe heart relies on the propagation of electrical impulses that are mediated gap junctions, whose conduction properties vary depending on the transjunctional voltage. Despite this non-linear feature, current mathematical models assume that cardiac tissue behaves like an Ohmic (linear) material, thus delivering inaccurate results when simulated in a computer. Here we present a novel mathematical multiscale model that explicitly includes the non-Ohmic response of gap junctions in its predictions. Our results show that the proposed model recovers important conduction features modulated by gap junctions at a fraction of the computational complexity. This contribution represents an important step towards constructing computer models of a whole heart that can predict organ-level behavior in reasonable computing times.


1990 ◽  
Vol 259 (1) ◽  
pp. C56-C68 ◽  
Author(s):  
Y. Segal ◽  
L. Reuss

The apical membrane of Necturus gallbladder epithelium contains a voltage-activated K+ conductance [Ga(V)]. Large-conductance (maxi) K+ channels underlie Ga(V) and account for 17% of the membrane conductance (Ga) under control conditions. We examined the Ba2+, tetraethylammonium (TEA+), and quinine sensitivities of Ga and single maxi K+ channels. Mucosal Ba2+ addition decreased resting Ga in a concentration-dependent manner (65% block at 5 mM) and decreased Ga(V) in a concentration- and voltage-dependent manner. Mucosal TEA+ addition also decreased control Ga (60% reduction at 5 mM). TEA+ block of Ga(V) was more potent and less voltage dependent that Ba2+ block. Maxi K+ channels were blocked by external Ba2+ at millimolar levels and by external TEA+ at submillimolar levels. At 0.3 mM, quinine (mucosal addition) hyperpolarized the cell membranes by 6 mV and reduced the fractional apical membrane resistance by 50%, suggesting activation of an apical membrane K+ conductance. At 1 mM, quinine both activated and blocked K(+)-conductive pathways. Quinine blocked maxi K+ channel currents at submillimolar concentrations. We conclude that 1) Ba2+ and TEA+ block maxi K+ channels and other K+ channels underlying resting Ga; 2) parallels between the Ba2+ and TEA+ sensitivities of Ga(V) and maxi K+ channels support a role for these channels in Ga(V); and 3) quinine has multiple effects on K(+)-conductive pathways in gallbladder epithelium, which are only partially explained by block of apical membrane maxi K+ channels.


Sign in / Sign up

Export Citation Format

Share Document