Urban–rural contrasts in summer soil-surface temperature and active-layer thickness, Barrow, Alaska, USA

2013 ◽  
Vol 36 (3) ◽  
pp. 183-201 ◽  
Author(s):  
Anna E. Klene ◽  
Frederick E. Nelson ◽  
Kenneth M. Hinkel
2016 ◽  
Author(s):  
Sebastian Westermann ◽  
Maria Peter ◽  
Moritz Langer ◽  
Georg Schwamborn ◽  
Lutz Schirrmeister ◽  
...  

Abstract. Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demonstrate a remote-sensing based scheme that is capable of estimating the transient evolution of ground temperatures and active layer thickness by means of the ground thermal model CryoGrid 2. The scheme is applied to an area of approx. 16 000 km2 in the Lena River Delta in NE Siberia for a period of 14 years. The forcing data sets at 1 km spatial and weekly temporal resolution are synthesized from satellite products (MODIS Land Surface Temperature, MODIS Snow Extent, GlobSnow Snow Water Equivalent) and fields of meteorological variables from the ERA-interim reanalysis. To assign spatially distributed ground thermal properties, a stratigraphic classification based on geomorphological observations and mapping is constructed which accounts for the large-scale patterns of sediment types, ground ice and surface properties in the Lena River Delta. A comparison of the model forcing to in-situ measurements on Samoylov Island in the southern part of the study area yields a satisfactory agreement both for surface temperature, snow depth and timing of the onset and termination of the winter snow cover. The model results are compared to observations of ground temperatures and thaw depths at nine sites in in the Lena River Delta which suggests that thaw depths are in most cases reproduced to within 0.1 m or less and multi-year averages of ground temperatures within 1 to 1.5 °C. The warmest ground temperatures are calculated for grid cells close to the main river channels in the south, as well as areas with sandy sediments and low organic and ice contents in the central delta, where also the largest thaw depths occur. On the other hand, the coldest temperatures are modeled for the eastern part, an area with low surface temperatures and snow depths. The lowest thaw depths are modeled for Yedoma permafrost featuring very high ground ice and soil organic contents in the southern parts of the delta. The comparison to in-situ observations indicates that the satellite-based model scheme is generally capable of estimating the thermal state of permafrost and its time evolution in the Lena River Delta. The approach could hence be a first step towards remote detection of ground thermal conditions and active layer thickness in permafrost areas.


2018 ◽  
Vol 10 (8) ◽  
pp. 1225 ◽  
Author(s):  
Xiongxiong Bai ◽  
Jian Yang ◽  
Bo Tao ◽  
Wei Ren

The soil active layer in boreal forests is sensitive to climate warming. Climate-induced changes in the active layer may greatly affect the global carbon budget and planetary climatic system by releasing large quantities of greenhouse gases that currently are stored in permafrost. Ground surface temperature is an immediate driver of active layer thickness (ALT) dynamics. In this study, we mapped ALT distribution in Chinese boreal larch forests from 2000 to 2015 by integrating remote sensing data with the Stefan equation. We then examined the changes of the ALT in response to changes in ground surface temperature and identified drivers of the spatio-temporal patterns of ALT. Active layer thickness varied from 1.18 to 1.3 m in the study area. Areas of nonforested land and low elevation or with increased air temperature had a relatively high ALT, whereas ALT was lower at relatively high elevation and with decreased air temperatures. Interannual variations of ALT had no obvious trend, however, and the ALT changed at a rate of only −0.01 and 0.01 m year−1. In a mega-fire patch of 79,000 ha burned in 2003, ΔALT (ALTi − ALT2002, where 2003 ≤ i ≤ 2015) was significantly higher than in the unburned area, with the influence of the wildfire persisting 10 years. Under the high emission scenario (RCP8.5), an increase of 2.6–4.8 °C in mean air temperature would increase ALT into 1.46–1.55 m by 2100, which in turn would produce a significant positive feedback to climate warming.


2017 ◽  
Vol 7 (2) ◽  
pp. 109-122 ◽  
Author(s):  
Evgeny Abakumov

Natural and anthropogenically-affected Cryosols of the Fildes Peninsula (King George Island, NWAntarcticPeninsula) from the surroundings of Russian polar station Bellingshausen were investigated by vertical electric sounding. The aim of the study was to asses the thawing depth and active layer thickness. Natural Turbic Croysols showed lesser thickness of active layer than the soils of former reclaimed wastes disposals. Average thickness of the active layer was 0.3-0.4 m in natural soil and 1.3-1.4 m in anthropogenically-affected ones. This was affected by the change in the temperature regime of soils, and related to the destruction of upper organic layer and mechanical disturbance of the active soil layer on the waste polygons. Itwasshown,thattheuseof vertical electric soundingmethodologyinthesoilsurveysisusefulfor the identificationofthe permafrostdepthwithoutdiggingofsoilpit.Thismethodallowstheidentificationofsoilheterogeneity, because the electric resistivity (ER) values are strongly affected by soil properties. ER also intensively changes on the border of differentgeochemicalregimes,i.e.ontheborderoftheactivelayerandthepermafrost. The lowest ER values were found for the upper organic horizons, the highest for permafrost table. Technogenic Superficial Formations exhibit lower resistivity values than natural soils. Therefore, disposition of WP and disturbance of the soil surface, results in permafrost degradation and an increase in the active layer thickness. 


2013 ◽  
Vol 5 (2) ◽  
pp. 305-310 ◽  
Author(s):  
C. Beer ◽  
A. N. Fedorov ◽  
Y. Torgovkin

Abstract. Based on the map of landscapes and permafrost conditions in Yakutia (Merzlotno-landshaftnaya karta Yakutskoi0 ASSR, Gosgeodeziya SSSR, 1991), rasterized maps of permafrost temperature and active-layer thickness of Yakutia, East Siberia were derived. The mean and standard deviation at 0.5-degree grid cell size are estimated by assigning a probability density function at 0.001-degree spatial resolution. The gridded datasets can be accessed at the PANGAEA repository (doi:10.1594/PANGAEA.808240). Spatial pattern of both variables are dominated by a climatic gradient from north to south, and by mountains and the soil type distribution. Uncertainties are highest in mountains and in the sporadic permafrost zone in the south. The maps are best suited as a benchmark for land surface models which include a permafrost module.


2013 ◽  
Vol 116 ◽  
pp. 128-141 ◽  
Author(s):  
B.L. Kerridge ◽  
J.W. Hornbuckle ◽  
E.W. Christen ◽  
R.D. Faulkner

Sign in / Sign up

Export Citation Format

Share Document