Spatial and temporal variability of ground surface temperature and active layer thickness at the margin of maritime Antarctica, Signy Island

Geomorphology ◽  
2012 ◽  
Vol 155-156 ◽  
pp. 20-33 ◽  
Author(s):  
Mauro Guglielmin ◽  
Michael Roger Worland ◽  
Nicoletta Cannone
2018 ◽  
Vol 10 (8) ◽  
pp. 1225 ◽  
Author(s):  
Xiongxiong Bai ◽  
Jian Yang ◽  
Bo Tao ◽  
Wei Ren

The soil active layer in boreal forests is sensitive to climate warming. Climate-induced changes in the active layer may greatly affect the global carbon budget and planetary climatic system by releasing large quantities of greenhouse gases that currently are stored in permafrost. Ground surface temperature is an immediate driver of active layer thickness (ALT) dynamics. In this study, we mapped ALT distribution in Chinese boreal larch forests from 2000 to 2015 by integrating remote sensing data with the Stefan equation. We then examined the changes of the ALT in response to changes in ground surface temperature and identified drivers of the spatio-temporal patterns of ALT. Active layer thickness varied from 1.18 to 1.3 m in the study area. Areas of nonforested land and low elevation or with increased air temperature had a relatively high ALT, whereas ALT was lower at relatively high elevation and with decreased air temperatures. Interannual variations of ALT had no obvious trend, however, and the ALT changed at a rate of only −0.01 and 0.01 m year−1. In a mega-fire patch of 79,000 ha burned in 2003, ΔALT (ALTi − ALT2002, where 2003 ≤ i ≤ 2015) was significantly higher than in the unburned area, with the influence of the wildfire persisting 10 years. Under the high emission scenario (RCP8.5), an increase of 2.6–4.8 °C in mean air temperature would increase ALT into 1.46–1.55 m by 2100, which in turn would produce a significant positive feedback to climate warming.


2014 ◽  
Vol 8 (4) ◽  
pp. 4033-4074
Author(s):  
P. Pogliotti ◽  
M. Guglielmin ◽  
E. Cremonese ◽  
U. Morra di Cella ◽  
G. Filippa ◽  
...  

Abstract. The objective of this paper is to provide a first synthesis on the state and recent evolution of permafrost at the monitoring site of Cime Bianche (3100 m a.s.l.). The analysis is based on seven years of ground temperatures observations in two boreholes and seven surface points. The analysis aims to quantify the spatial and temporal variability of ground surface temperatures in relation to snow cover, the small scale spatial variability of the active layer thickness and the warming trends on deep permafrost temperatures. Results show that the heterogeneity of snow cover thickness, both in space and time, is the main factor controlling ground surface temperatures and leads to a mean range of spatial variability (2.5±0.15°C) which far exceeds the mean range of observed inter-annual variability (1.6±0.12°C). The active layer thickness measured in two boreholes 30 m apart, shows a mean difference of 2.03±0.15 m with the active layer of one borehole consistently lower. As revealed by temperature analysis and geophysical soundings, such a difference is mainly driven by the ice/water content in the sub-surface and not by the snow cover regimes. The analysis of deep temperature time series reveals that permafrost is warming. The detected linear trends are statistically significant starting from depth below 8 m, span the range 0.1–0.01°C year−1 and decrease exponentially with depth. Our findings are discussed in the context of the existing literature.


2006 ◽  
Vol 18 (3) ◽  
pp. 323-333 ◽  
Author(s):  
N. Cannone ◽  
J.C. Ellis Evans ◽  
R. Strachan ◽  
M. Guglielmin

In the summer 2000–01, thermal monitoring of the permafrost active layer within various terrestrial sites covered by lichen, moss or grasses was undertaken at Jubany (King George Island) and Signy Island in the Maritime Antarctic. The results demonstrated the buffering effect of vegetation on ground surface temperature (GST) and the relationship between vegetation and active layer thickness. Vegetation type and coverage influenced the GST in both locations with highest variations and values in the Deschampsia and Usnea sites and the lowest variations and values in the Jubany moss site. Active layer thickness ranged from 57 cm (Jubany moss site) to 227 cm (Signy Deschampsia site). Active layer thickness data from Signy were compared with data collected at the same location four decades earlier. Using a regression equation for air temperature versus ground surface temperatures the patterns of changing air temperature over time suggest that the active layer thickness increased c. 30 cm between 1963 and 1990 and then decreased 30 cm between 1990 and 2000. The documented increased rate of warming (2°C ± 1) since 1950 for air temperatures recorded in the South Orkney Islands suggests that the overall trend of active layer thickness increase will be around 1 cm year−1.


2015 ◽  
Vol 9 (2) ◽  
pp. 647-661 ◽  
Author(s):  
P. Pogliotti ◽  
M. Guglielmin ◽  
E. Cremonese ◽  
U. Morra di Cella ◽  
G. Filippa ◽  
...  

Abstract. The objective of this paper is to provide a first synthesis on the state and recent evolution of permafrost at the monitoring site of Cime Bianche (3100 m a.s.l.) on the Italian side of the Western Alps. The analysis is based on 7 years of ground temperature observations in two boreholes and seven surface points. The analysis aims to quantify the spatial and temporal variability of ground surface temperature in relation to snow cover, the small-scale spatial variability of the active layer thickness and current temperature trends in deep permafrost. Results show that the heterogeneity of snow cover thickness, both in space and time, is the main factor controlling ground surface temperatures and leads to a mean range of spatial variability (2.5 ± 0.1 °C) which far exceeds the mean range of observed inter-annual variability (1.6 ± 0.1 °C). The active layer thickness measured in two boreholes at a distance of 30 m shows a mean difference of 2.0 ± 0.1 m with the active layer of one borehole consistently deeper. As revealed by temperature analysis and geophysical soundings, such a difference is mainly driven by the ice/water content in the sub-surface and not by the snow cover regimes. The analysis of deep temperature time series reveals that permafrost is warming. The detected trends are statistically significant starting from a depth below 8 m with warming rates between 0.1 and 0.01 °C yr−1.


Author(s):  
Zhaohui Joey Yang ◽  
Kannon C. Lee ◽  
Haibo Liu

AbstractAlaska’s North Slope is predicted to experience twice the warming expected globally. When summers are longer and winters are shortened, ground surface conditions in the Arctic are expected to change considerably. This is significant for Arctic Alaska, a region that supports surface infrastructure such as energy extraction and transport assets (pipelines), buildings, roadways, and bridges. Climatic change at the ground surface has been shown to impact soil layers beneath through the harmonic fluctuation of the active layer, and warmer air temperature can result in progressive permafrost thaw, leading to a deeper active layer. This study attempts to assess climate change based on the climate model data from the fifth phase of the Coupled Model Intercomparison Project and its impact on a permafrost environment in Northern Alaska. The predicted air temperature data are analyzed to evaluate how the freezing and thawing indices will change due to climate warming. A thermal model was developed that incorporated a ground surface condition defined by either undisturbed intact tundra or a gravel fill surface and applied climate model predicted air temperatures. Results indicate similar fluctuation in active layer thickness and values that fall within the range of minimum and maximum readings for the last quarter-century. It is found that the active layer thickness increases, with the amount depending on climate model predictions and ground surface conditions. These variations in active layer thickness are then analyzed by considering the near-surface frozen soil ice content. Analysis of results indicates that thaw strain is most significant in the near-surface layers, indicating that settlement would be concurrent with annual thaw penetration. Moreover, ice content is a major factor in the settlement prediction. This assessment methodology, after improvement, and the results can help enhance the resilience of the existing and future new infrastructure in a changing Arctic environment.


2014 ◽  
Vol 6 (2) ◽  
pp. 1423-1449 ◽  
Author(s):  
R. F. M. Michel ◽  
C. E. G. R. Schaefer ◽  
F. N. B. Simas ◽  
Francelino M. R. ◽  
E. I. Fernandes-Filho ◽  
...  

Abstract. International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008–2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.


2007 ◽  
Vol 60 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Ming-ko Woo ◽  
Michael Mollinga ◽  
Sharon L. Smith

Abstract A large part of the boreal zone of the western Canadian Arctic is underlain by ice-rich discontinuous permafrost which when thawed, can lead to settlement of the ground surface that has implications for the integrity of northern infrastructure, including oil and gas pipelines. A simple yet physically-based model is desired to simulate thawing of the active layer in different materials commonly found along the Mackenzie Valley pipeline corridor. Stefan’s algorithm determines the phase change of soil moisture using ground surface temperature as the upper boundary condition and conduction to transfer heat to the freeze-thaw front. It is tested on a permafrost site near Wrigley, Northwest Territories, where the computed thaw penetration compares satisfactorily with field data. To further explore the effects of climate and soil types on active layer depth, three representative sites in the Mackenzie valley where ground surface temperatures are available were selected for simulation of ground thaw, under two summer conditions. Results of the simulation demonstrate the sensitivity of active layer thaw to (1) soil materials due to differential thermal properties, (2) moisture content, which largely controls the latent heat requirement for phase change, and (3) inter-annual variations in ground surface temperature. Given the strong potential for environmental changes in the vast boreal region, the model allows the active layer thaw responses to be easily assessed.


CATENA ◽  
2020 ◽  
Vol 190 ◽  
pp. 104562 ◽  
Author(s):  
Filip Hrbáček ◽  
Nicoletta Cannone ◽  
Michaela Kňažková ◽  
Francesco Malfasi ◽  
Peter Convey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document