Evaluation of depth-dependent properties of municipal solid waste using a large diameter-borehole sampling method

Author(s):  
John Hartwell ◽  
M. Sina Mousavi ◽  
Jongwan Eun ◽  
Shannon Bartelt-Hunt
2021 ◽  
pp. 0734242X2110570
Author(s):  
John Hartwell ◽  
M Sina Mousavi ◽  
Jongwan Eun ◽  
Shannon Bartelt-Hunt

A Municipal Solid Waste Borehole Assessment (MBA) was developed to assess in situ geotechnical properties of municipal solid waste (MSW) during the boring of gas extraction well construction. A Large-Diameter Borehole Caliper (LDBC) was lowered into the borehole to measure the diameter and record the condition of the wall by time-lapse video photography. The results indicated that the borehole experienced significant radial compression with depth following completion. Radial compressions amounted to approximately 7.5% at 9.14 m, 10% at 21.3 m and 11% at 27.4 m below ground surface. The bulk modulus was estimated by using the captured volumetric strains and reported lateral earth coefficients, and the results showed that it increases with increasing depth. For MSW, the bulk modulus increased up to 13.4 MPa in a linear trend with depth. The unit weights of MSW were obtained using three diameter readings from LDBC, auger barrel outside diameter and outer cutting bit outside diameter. The results showed that the diameter based on outer cutting bit yielded realistic unit weights (5.08–9.68 kN m–3) due to unrealistic calculated saturations by other two assumed diameters. The borehole assessment with LDBC was shown to be an efficient and valuable means for characterising MSW and effectively designing gas extraction wells. The research provided a means to assess the waste mass with accuracy at great depths by directly observing and measuring borehole condition.


2009 ◽  
Vol 46 (10) ◽  
pp. 1133-1145 ◽  
Author(s):  
Manoj K. Singh ◽  
Jitendra S. Sharma ◽  
Ian R. Fleming

This paper presents results of shear strength testing of intact and recompacted samples of municipal solid waste (MSW). A method for in situ sampling of MSW from landfills using a push-in sampler was developed and used to obtain intact samples of MSW from a large municipal landfill. Shear strength testing of MSW was carried out using a large triaxial compression apparatus as well as a large direct shear apparatus. The results are presented in terms of cohesion intercept (c′) and angle of shearing resistance ([Formula: see text]) and are compared with those available in published literature. Based on these results and their favourable comparison with this literature, it can be concluded that meaningful shear strength parameters for MSW can be obtained using consolidated undrained triaxial tests on large-diameter intact and recompacted samples. A fairly consistent picture of the shear behaviour of MSW obtained from effective stress paths in triaxial tests appears to suggest that shear behaviour of MSW can be explained using the effective stress principle. It is suggested that recompacted samples could be used for obtaining reasonable estimates of c′ and [Formula: see text] for MSW; however, it may be necessary to use intact samples to establish the pre-failure deformation behaviour of MSW.


Author(s):  
A Yurchenko ◽  
◽  
D Kulikova ◽  
E Dmitruk ◽  
L Cheberiachko ◽  
...  

2016 ◽  
Vol 2 (2) ◽  
pp. 39-44
Author(s):  
Oscar Cabeza ◽  
◽  
Alfredo Alonso ◽  
Yoel Lastre ◽  
Jorge Medina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document