Assessment of in situ properties of municipal solid waste with a large-diameter borehole method

2021 ◽  
pp. 0734242X2110570
Author(s):  
John Hartwell ◽  
M Sina Mousavi ◽  
Jongwan Eun ◽  
Shannon Bartelt-Hunt

A Municipal Solid Waste Borehole Assessment (MBA) was developed to assess in situ geotechnical properties of municipal solid waste (MSW) during the boring of gas extraction well construction. A Large-Diameter Borehole Caliper (LDBC) was lowered into the borehole to measure the diameter and record the condition of the wall by time-lapse video photography. The results indicated that the borehole experienced significant radial compression with depth following completion. Radial compressions amounted to approximately 7.5% at 9.14 m, 10% at 21.3 m and 11% at 27.4 m below ground surface. The bulk modulus was estimated by using the captured volumetric strains and reported lateral earth coefficients, and the results showed that it increases with increasing depth. For MSW, the bulk modulus increased up to 13.4 MPa in a linear trend with depth. The unit weights of MSW were obtained using three diameter readings from LDBC, auger barrel outside diameter and outer cutting bit outside diameter. The results showed that the diameter based on outer cutting bit yielded realistic unit weights (5.08–9.68 kN m–3) due to unrealistic calculated saturations by other two assumed diameters. The borehole assessment with LDBC was shown to be an efficient and valuable means for characterising MSW and effectively designing gas extraction wells. The research provided a means to assess the waste mass with accuracy at great depths by directly observing and measuring borehole condition.

2003 ◽  
Vol 23 (7) ◽  
pp. 667-674 ◽  
Author(s):  
Nitin A. Gawande ◽  
Debra R. Reinhart ◽  
Philip A. Thomas ◽  
Philip T. McCreanor ◽  
Timothy G. Townsend

2020 ◽  
Vol 148 ◽  
pp. 388-401 ◽  
Author(s):  
Vibhuti Chhabra ◽  
Keith Bambery ◽  
Sankar Bhattacharya ◽  
Yogendra Shastri

1993 ◽  
Vol 27 (2) ◽  
pp. 235-241 ◽  
Author(s):  
B. Marticorena ◽  
A. Attal ◽  
P. Camacho ◽  
J. Manem ◽  
D. Hesnault ◽  
...  

The objective of this study was to develop a tool to predict the quantity of biogas produced by a municipal solid waste (MSW) landfill site to allow the energy it represents to be exploited. The model proposed is based on a first-order kinetic equation which describes the production of methane during in-situ decomposition of MSW. This equation was applied to a landfill site considering the MSW mass as a series of layers of waste of differing ages. The equation includes three parameters: MPo, the methane potential of fresh waste which is specific to MSW, d, the in-situ life duration of the waste which depends on the landfilling conditions and Ti, the filling rate, i.e. the rate at which waste is placed in the landfill site. This simple model, usable for all types of landfill and, by virtue of the parameters it uses, closely represents the site operating conditions. The approach was applied to the Villeparisis site and predicted a methane production rate of between 270 and 410 m3h−1, quite close to the measured value of 300 m3.h−1. In addition, the possibility of simulating variable landfill rates and waste life durations can be used to guide site management techniques to optimize the valorisation of the biogas and provide a global approach to the problem by incorporating leachate collection into the biogas exploitation calculations.


2020 ◽  
Vol 146 (9) ◽  
pp. 04020077
Author(s):  
Leticia M. Nocko ◽  
Keaton Botelho ◽  
Jeremy W. F. Morris ◽  
Ranjiv Gupta ◽  
John S. McCartney

Sign in / Sign up

Export Citation Format

Share Document