Land cover changes in an abandoned agricultural land in the Northern Apennine (Italy) between 1954 and 2008: Spatio-temporal dynamics

Author(s):  
S. Assini ◽  
F. Filipponi ◽  
F. Zucca
2021 ◽  
Author(s):  
Wolfgang A. Obermeier ◽  
Julia E. M. S. Nabel ◽  
Tammas Loughran ◽  
Kerstin Hartung ◽  
Ana Bastos ◽  
...  

Abstract. Quantifying the net carbon flux from land use and land cover changes (fLULCC) is critical for understanding the global carbon cycle, and hence, to support climate change mitigation. However, large-scale fLULCC is not directly measurable, but has to be inferred from models instead, such as semi-empirical bookkeeping models, and process-based dynamic global vegetation models (DGVMs). By definition, fLULCC estimates are not directly comparable between these two different model types. As an example, DGVM-based fLULCC in the annual global carbon budgets is estimated under transient environmental forcing and includes the so-called Loss of Additional Sink Capacity (LASC). The LASC accounts for the impact of environmental changes on land carbon storage potential of managed land compared to potential vegetation which is not represented in bookkeeping models. In addition, fLULCC from transient DGVM simulations differs depending on the arbitrary chosen simulation time period and the historical timing of land use and land cover changes (including different accumulation periods for legacy effects). An approximation of fLULCC by DGVMs that is independent of the timing of land use and land cover changes and their legacy effects requires simulations assuming constant pre-industrial or present-day environmental forcings. Here, we analyze three DGVM-derived fLULCC estimations for twelve models within 18 regions and quantify their differences as well as climate- and CO2-induced components. The three estimations stem from the commonly performed simulation with transiently changing environmental conditions and two simulations that keep environmental conditions fixed, at pre-industrial and present-day conditions. Averaged across the models, we find a global fLULCC (under transient conditions) of 2.0 ± 0.6 PgC yr-1 for 2009–2018, of which ∼40 % are attributable to the LASC (0.8 ± 0.3 PgC yr-1). From 1850 onward, fLULCC accumulated to 189 ± 56 PgC with 40 ± 15 PgC from the LASC. Regional hotspots of high cumulative and annual LASC values are found in the USA, China, Brazil, Equatorial Africa and Southeast Asia, mainly due to deforestation for cropland. Distinct negative LASC estimates, in Europe (early reforestation) and from 2000 onward in the Ukraine (recultivation of post-Soviet abandoned agricultural land), indicate that fLULCC estimates in these regions are lower in transient DGVM- compared to bookkeeping-approaches. By unraveling spatio-temporal variability in three alternative DGVM-derived fLULCC estimates, our results call for a harmonized attribution of model-derived fLULCC. We propose an approach that bridges bookkeeping and DGVM approaches for fLULCC estimation by adopting a mean DGVM-ensemble LASC for a defined reference period.


2021 ◽  
Author(s):  
Wolfgang Obermeier ◽  

<p>The quantification of the net carbon flux from land use and land cover changes (f<sub>LULCC</sub>) is essential to understand the global carbon cycle, and consequently, to support climate change mitigation. However, large-scale f<sub>LULCC</sub> is not directly measurable, and can only be inferred by models, such as semi-empirical bookkeeping models, and process-based dynamic global vegetation models (DGVMs). By definition, f<sub>LULCC</sub> estimates between these two model types are not directly comparable. For example, transient DGVM-based f<sub>LULCC</sub> of the annual global carbon budget includes the so-called Loss of Additional Sink Capacity (LASC). The latter accounts for environmental impacts on the land carbon storage capacities of managed land compared to potential vegetation which is not included in bookkeeping models. Additionally, estimates of transient DGVM-based f<sub>LULCC</sub> differ from bookkeeping model estimates, since they depend on arbitrarily chosen simulation time periods and the timing of land use and land cover changes within the historic period (which includes different accumulation periods for legacy effects). However, DGVMs enable a f<sub>LULCC</sub> approximation independent of the timing of land use and land cover changes and their legacy effects by simulations run under constant pre-industrial or present-day environmental forcings.</p><p>In this study, we analyze these different DGVM-derived f<sub>LULCC</sub> definitions, under transiently changing environmental conditions and fixed pre-industrial and fixed present-day conditions, within 18 regions for twelve DGVMs and quantify their differences as well as climate- and CO<sub>2</sub>-induced components. The multi model mean under transient conditions reveals a global f<sub>LULCC</sub> of 2.0±0.6 PgC yr<sup>-1</sup> for 2009-2018, with ~40% stemming from the LASC (0.8±0.3 PgC yr<sup>-1</sup>). Within the industrial period (1850 onward), cumulative f<sub>LULCC</sub> reached 189±56 PgC with 40±15 PgC from the LASC.</p><p>Regional hotspots of high LASC values exist in the USA, China, Brazil, Equatorial Africa and Southeast Asia, which we mainly relate to deforestation for cropland. Distinct negative LASC estimates were observed in Europe (early reforestation) and from 2000 onward in the Ukraine (recultivation of post-Soviet abandoned agricultural land). Negative LASC estimates indicate that fLULCC estimates in these regions are lower in transient DGVM simulations compared to bookkeeping-approaches. By unraveling the spatio-temporal variability of the different DGVM-derived f<sub>LULCC</sub> estimates, our study calls for a harmonized attribution of model-derived f<sub>LULCC</sub>. We propose an approach that bridges bookkeeping and DGVM approaches for f<sub>LULCC</sub> estimation by adopting a mean DGVM-ensemble LASC for a defined reference period.</p>


2020 ◽  
Vol 2 (2) ◽  
pp. 87-99
Author(s):  
M. Mamnun ◽  
S. Hossen

The main purpose of this study is to describe the spatio-temporal analysis of land use and land cover status and to identify land cover changes, especially of deforestation and degradation in evergreen, semi-evergreen rainforests of Chittagong Hill Tracts from 1988-2018 by using Landsat 8 OLI-TIRS and Landsat 5 TM satellite imagery. The ArcGIS v10.5 and ERDAS Imagine v15 software were used to process satellite imageries and assess quantitative data for land-use change assessment of this study area. The study revealed that the area of forest land and water body decreased by 17.92% and 5.43% respectively from 1988-2018. On the other hand, the area of agricultural land, barren land and settlement increased by 45.66%, 312.08% and 240.01% respectively. If the present condition remains constant, the projection of future land-use/ land cover changes for the next 15 years will predict that more than 7.37% dense forest (2253.83 ha) land will be decreased and 19.60% agricultural will be converted to other land uses. This study suggests that proper policy should be adopted urgently to conserve residual forest coverage and restore it to regain its past appearance.


2014 ◽  
Vol 4 (1) ◽  
pp. 6 ◽  
Author(s):  
Anthony Egeru ◽  
Oliver Wasonga ◽  
Joseph Kyagulanyi ◽  
GJ Majaliwa ◽  
Laban MacOpiyo ◽  
...  

Hydrology ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 56 ◽  
Author(s):  
Salomon Obahoundje ◽  
Arona Diedhiou ◽  
Eric Antwi Ofosu ◽  
Sandrine Anquetin ◽  
Baptiste François ◽  
...  

West African basins play a vital role in the socio-economic development of the region. They are mostly trans-boundary and sources of different land use practices. This work attempts to assess the spatio-temporal land use and land cover changes over three South Western African basins (Volta, Mono and Sassandra basins) and their influence on discharge. The land use and land cover maps of each basin were developed for 1988, 2002 and 2016. The results show that all the studied basins present an increase in water bodies, built-up, agricultural land and a decline in vegetative areas. These increases in water bodies and land use are as a result of an increase in small reservoirs, of dugouts and of dam constructions. However, the decline in some vegetative clusters could be attributed to the demographic and socio-economic growth as expressed by the expansion of agriculture and urbanization. The basic statistical analysis of precipitation and discharge data reveals that the mean annual discharge varies much more than the total annual precipitation at the three basins. For instance, in the entire Volta basin, the annual precipitation coefficient of variation (CV) is 10% while the annual discharge CV of Nawuni, Saboba and Bui are 43.6%, 36.51% and 47.43%, respectively. In Mono basin, the annual precipitation CV is 11.5% while the Nangbeto and Athieme annual discharge CV are 37.15% and 46.60%, respectively. The annual precipitation CV in Sassandra basin is 7.64% while the annual discharge CV of Soubre and Dakpadou are 29.41% and 37%, respectively. The discharge varies at least three times much more than the precipitation in the studied basins. The same conclusion was found for all months except the driest months (December and January). We showed that this great variation in discharge is mainly due to land use and land cover changes. Beside the hydrological modification of the land use and land cover changes, the climate of the region as well as the water quality and availability and the hydropower generation may be impacted by these changes in land surfaces conditions. Therefore, these impacts should be further assessed to implement appropriate climate services and measures for a sustainable land use and water management.


2016 ◽  
Vol 17 (2) ◽  
pp. 451-463 ◽  
Author(s):  
Sofie Annys ◽  
Biadgilgn Demissie ◽  
Amanuel Zenebe Abraha ◽  
Miro Jacob ◽  
Jan Nyssen

Sign in / Sign up

Export Citation Format

Share Document