scholarly journals Isotropy of an upper limb exoskeleton and the kinematics and dynamics of the human arm

2009 ◽  
Vol 6 (2) ◽  
pp. 175-191 ◽  
Author(s):  
Joel C. Perry ◽  
Janet M. Powell ◽  
Jacob Rosen
2018 ◽  
Vol 8 (3) ◽  
pp. 464 ◽  
Author(s):  
Xin Wang ◽  
Qiuzhi Song ◽  
Xiaoguang Wang ◽  
Pengzhan Liu

2012 ◽  
Vol 59 (6) ◽  
pp. 1770-1779 ◽  
Author(s):  
Hyunchul Kim ◽  
Levi Makaio Miller ◽  
Nancy Byl ◽  
G. Abrams ◽  
J. Rosen

2021 ◽  
Vol 12 (1) ◽  
pp. 661-675
Author(s):  
Qiaolian Xie ◽  
Qiaoling Meng ◽  
Qingxin Zeng ◽  
Hongliu Yu ◽  
Zhijia Shen

Abstract. Upper limb exoskeleton rehabilitation robots have been attracting significant attention by researchers due to their adaptive training, highly repetitive motion, and ability to enhance the self-care capabilities of patients with disabilities. It is a key problem that the existing upper limb exoskeletons cannot stay in line with the corresponding human arm during exercise. The aim is to evaluate whether the existing upper limb exoskeleton movement is in line with the human movement and to provide a design basis for the future exoskeleton. This paper proposes a new equivalent kinematic model for human upper limb, including the shoulder joint, elbow joint, and wrist joint, according to the human anatomical structure and sports biomechanical characteristics. And this paper analyzes the motion space according to the normal range of motion of joints for building the workspace of the proposed model. Then, the trajectory planning for an upper limb exoskeleton is evaluated and improved based on the proposed model. The evaluation results show that there were obvious differences between the exoskeleton prototype and human arm. The deviation between the human body and the exoskeleton of the improved trajectory is decreased to 41.64 %. In conclusion, the new equivalent kinematics model for the human upper limb proposed in this paper can effectively evaluate the existing upper limb exoskeleton and provide suggestions for structural improvements in line with human motion.


Author(s):  
Zhirui Zhao ◽  
Xing Li ◽  
Mingfang Liu ◽  
Xingchen Li ◽  
Haoze Gao ◽  
...  

The upper-limb exoskeleton is capable of enhancing human arm strength beyond normal levels, whereas deriving the operator’s desired action straightforward turns out to be one of the significant difficulties facing human-robot interaction research. In the study, the human-robot interface was presented to regulate the exoskeleton tracking human elbow motion trajectory that employed the contact force signals between the exoskeleton and its operator as the primary means of information transportation. The signals were recorded by adopting the novel soft skin sensors attached to the bracket on the exoskeleton linkage, which could reflect the human arm motion intention through the virtual admittance model and adaptive control. Subsequently, a 1-DOF upper-limb exoskeleton was designed to illustrate the performance of the proposed sensor and the interaction control method in the human-robot cooperation experiment.


2009 ◽  
Vol 6 (2) ◽  
pp. 143-155 ◽  
Author(s):  
Felix Martinez ◽  
Aron Pujana-Arrese ◽  
Iban Retolaza ◽  
Irantzu Sacristan ◽  
Jon Basurko ◽  
...  

IKerlan’s Orthosis (IKO) is an upper limb exoskeleton oriented to increasing human force during routine activity at the workplace. Therefore, it can be considered as a force-amplification device conceived to work in collaboration with the human arm and implementing biomimetic principles. The aim of the proposed design is to find the best compromise between maximum reachable workspace and minimum moving mass, which are the key factors for obtaining an ergonomic, wearable exoskeleton. It consists of five actuated degree of freedom (DoF) to move the human arm and three non-actuated DoF between the back and shoulder to allow relative displacement of the sterno-clavicular joint. Conventional electrical motors are used for most of the DoF and pneumatic muscles for one of them (forearm rotation). Power transmission is based on Bowden cables. This paper presents the IKO design, the mechanical structure of a first prototype and the redesign process from an aesthetic point of view. Controller set-up and control strategies are also shown, together with dynamic performance from experimental results.


Sign in / Sign up

Export Citation Format

Share Document