Intraspecific variation of leaf traits in several deciduous species in relation to length of growing season

Ecoscience ◽  
1996 ◽  
Vol 3 (4) ◽  
pp. 483-489 ◽  
Author(s):  
Gaku Kudo
AoB Plants ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Angela Stanisci ◽  
Alessandro Bricca ◽  
Valentina Calabrese ◽  
Maurizio Cutini ◽  
Harald Pauli ◽  
...  

Abstract Mediterranean high mountain grasslands are shaped by climatic stress and understanding their functional adaptations can contribute to better understanding ecosystems’ response to global change. The present work analyses the plant functional traits of high-elevation grasslands growing in Mediterranean limestone mountains to explore, at the community level, the presence of different plant strategies for resource use (conservative vs. acquisitive) and functional diversity syndromes (convergent or divergent). Thus, we compared the functional composition and diversity of the above-ground traits related to resource acquisition strategies of subalpine and alpine calcareous grasslands in the central Apennines, a mountain region characterized by a dry-summer Mediterranean climate. We used georeferenced vegetation plots and field-measured plant functional traits (plant maximum height, specific leaf area and leaf dry matter content) for the dominant species of two characteristic vegetation types: the subalpine Sesleria juncifolia community and the alpine Silene acaulis community. Both communities are of particular conservation concern and are rich in endemic species for which plant functional traits are measured here for the first time. We analysed the functional composition and diversity using the community-weighted mean trait index and the functional diversity using Rao’s function, and we assessed how much the observed pattern deviated from a random distribution by calculating the respective standardized effect sizes. The results highlighted that an acquisitive resource use strategy and relatively higher functional diversity of leaf traits prevail in the alpine S. acaulis community, optimizing a rapid carbon gain, which would help overcome the constraints exerted by the short growing season. The divergent functional strategy underlines the co-occurrence of different leaf traits in the alpine grasslands, which shows good adaptation to a microhabitat-rich environment. Conversely, in the subalpine S. juncifolia grassland, a conservative resource use strategy and relatively lower functional diversity of the leaf traits are likely related to a high level resistance to aridity over a longer growing season. Our outcomes indicate the preadaptation strategy of the subalpine S. juncifolia grassland to shift upwards to the alpine zone that will become warmer and drier as a result of anthropogenic climate change.


2021 ◽  
Author(s):  
Christodoulos I Sazeides ◽  
Nikolaos M Fyllas ◽  
Anastasia Christopoulou

<p>Foliar properties play a crucial role in local and global biochemical cycles. Systematic variation in key leaf traits has been reported both between and within species. Intraspecific variation in leaf traits is controlled by micro-environmental conditions and follows seasonal patterns. In this study we examine the seasonal patterns of six foliar traits including leaf area (LA), leaf thickness (Lth), leaf mass per area (LMA), leaf dry matter content (LDMC), leaf area to sapwood area ratio (LA/SA) and branch wood density (WD) in addition to the associated parameters of the Michaelis-Menten light response curve (i.e. light saturated net photosynthetic rate (Asat), half saturation coefficient (Km) and dark respiration rate (Rd)). We measured on a monthly basis the foliar traits and developed light response curves in four Pinus brutia dominated stands along a post-fire chronosequence (15, 40, 70 and 90 years) from sunlit branches. Significant differences in the interannual trait variability were found between stands for LDMC, WD and Asat, with the highest variability identified in the younger plot. LA/SA, Rd and Km also showed strong interannual variability although not statistically different between plots. A mixed effect model analysis revealed high intraclass correlation coefficients for Km and Asat suggesting that net photosynthesis is following systematic seasonal patterns. Overall LA was higher and LDMC was lower in the oldest plot and WD was higher in the denser (40 years) plot. Interestingly gas exchange parameters did not show differences in their overall mean values. Across plots, Asat was strongly positively related to Km, and LMA was positively related to LDMC and Lth. LDMC was also positively related with Asat and negatively with Lth. A principal component analysis (PCA) revealed two major dimensions of intraspecific trait variability within our plots. The first PCA axis was positively related to Asat, Km, LDMC and LMA suggesting that regardless of the stand age needles are placed along a fast-slow carbon gain dimension with denser needles illustrating faster area-based photosynthesis. The second PCA axis was positively related to LA and Lth suggesting that bigger needles are also thicker. A subsequent permutational multivariate analysis of variance revealed that the centroids and the dispersion of the trait syndromes differed between stands, with the youngest plot illustrating higher trait dispersion and the oldest plot characterized by bigger and thicker needles. Thus, in older stands were competition for light is higher, needles are deployed to be bigger and thicker to optimize light capture, while in younger stands they are optimized along a leaf density - photosynthetic capacity spectrum depending on (more heterogeneous) microenvironmental conditions. Our findings illustrate that intraspecific variation can be attributed to either seasonal (abiotic) light availability or to (biotic) heterogeneity related to stand structure, and have important implications for local scale forest dynamics models.</p><p>«This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Carbon fluxes across a post-fire chronosequence in Pinus brutia Ten forests.” (MIS 5049513)».</p>


2006 ◽  
Vol 54 (3) ◽  
pp. 249 ◽  
Author(s):  
M. Kohout ◽  
J. Read

Deciduous species of Nothofagus tend to replace evergreen Nothofagus at the highest altitudes. We investigated whether deciduous Nothofagus species have higher maximum rates of net photosynthesis (Pmax) and specific leaf area (SLA) than evergreen species and whether there is an increasing photosynthetic advantage (e.g. higher Pmax) in deciduous species relative to evergreen species with increasing altitude that might explain their replacement of evergreen species. Net photosynthesis was investigated in (1) five deciduous and five evergreen species of Nothofagus grown in a common environment and (2) two co-occurring species, N. gunnii (Hook.f.) Oerst. (deciduous) and N. cunninghamii (Hook.) Oerst. (evergreen), across a range of altitudes in Tasmania. In the first experiment, the maximum rate of net photosynthesis per leaf mass (Pmax, mass) and SLA were higher in deciduous species, whereas the maximum rate of net photosynthesis per leaf area (Pmax, area) did not differ between leaf habits. However, in the field-based study, both mass- and area-based Pmax were higher in N. gunnii than N. cunninghamii across all sites. The high Pmax, mass of deciduous species may provide a competitive advantage at higher altitudes by maximising carbon gain during the growing season. However, in the study of sympatric populations of N. gunnii and N. cunninghamii there was no evidence of increasing photosynthetic advantage of the deciduous N. gunnii with increasing altitude.


1995 ◽  
Vol 25 (11) ◽  
pp. 1881-1885 ◽  
Author(s):  
Gaku Kudo

Leaf demography, shoot growth, and seasonal changes of leaf size, specific leaf area, and leaf nitrogen (N) concentration of Betulaplatyphylla var. japonica Hara were compared at two altitudes (140 and 700 m above sea level). At the higher site, where the length of growing season was restricted, leaf life-span was shorter and leaf N concentration was higher throughout the growing season than at the lower site. Leaf size did not differ between sites. Production of short-lived and high N concentration leaves was considered adaptive under the condition of short growing season. At the higher site, N was translocated from senescing early leaves to late leaves in mid-September, whereas a significant increase in late leaf N concentration was not observed at the lower site. There were no differences in shoot growth, bud size, late leaf number on long shoots between sites, probably because of effective N use at the higher site.


2007 ◽  
Vol 34 (11) ◽  
pp. 963 ◽  
Author(s):  
Michael Kessler ◽  
Yvonne Siorak ◽  
Meike Wunderlich ◽  
Caroline Wegner

Macroecological patterns of leaf traits can be used to assess adaptive responses of plants to environmental stress. Here we present the first such study on a large number of fern species (403) along gradients of elevation (temperature) and humidity. To assess how the representation of traits such as degree of lamina dissection, leaf length, leaf mass per area (LMA), trichome density, venation density, stomatal density, and of adaptive strategies such as poikilohydry vary at the community and species levels in response to changes in humidity and temperature in the Bolivian Andes, we (1) compared whole pteridophyte communities at 14 sites, and (2) analysed intraspecific variation of the morphological traits of 17 fern species along an elevational gradient at 1700–3400 m in humid forest. Among the fern communities of the 14 sites, leaf length decreased with elevation and aridity, LMA increased with elevation, and trichome density and venation density increased with aridity. The study of intraspecific variation among 17 species showed an increase of stomatal density with elevation in six of 11 species (filmy ferns lacked stomata), an increase of specific weight in 15 species, a decrease of trichome density in seven of 10 species (other species lacked hairs), and a decrease of venation density in seven of 10 cases. Some of these trends can be interpreted adaptively: leaf thickness appears to increase in situations with low nutrient availability rather than with low water availability, whereas a dense cover of scales or hairs serves as a protection against insolation or as a vehicle for the absorption of water in poikilohydric species. In arid areas, trichome density increased with elevation, while it decreased with elevation in cloudy and humid regions. For most traits, variation was more pronounced at the community than at the species level, except for stomatal density, which varied much more strongly within than between species. Several of these morphological and anatomical characters can be used to infer palaeoclimatic conditions based on fossil pteridophyte floras.


Flora ◽  
2021 ◽  
pp. 151829
Author(s):  
Igor Araújo ◽  
Beatriz S. Marimon ◽  
Marina C. Scalon ◽  
Wesley J.A. Cruz ◽  
Sophie Fauset ◽  
...  

2021 ◽  
Author(s):  
Sergio Marconi ◽  
Benjamin G Weinstein ◽  
Jeremy W Lichstein ◽  
Stephanie A Bohlman ◽  
Aditya Singh ◽  
...  

Functional traits are central to how organisms perform and influence ecosystem function. Although phylogenetic constraints and environmental conditions are both known to affect trait distributions, data limitations have resulted in large scale studies modeling traits either as species weighted averages (ignoring intraspecific variation) or as a function of the environment (ignoring phylogenetic constraints). As a result, large scale predictions for trait distributions do not include key drivers, likely resulting in biased predictions, and cannot be used to assess the relative contributions of inter- and intraspecific variation. To address these limitations, we developed a joint model integrating phylogenetic and environmental information to understand and predict the distribution of eight leaf traits across the eastern United States. This joint model explained 68% of trait variation, outperforming both species-only and environment-only models, with variance attributable to phylogeny alone (23%), the environment alone (18%), and their overlapping effects (26%). The importance of phylogenetic constraints and the environment varied by trait, with some traits associated predominantly with environmental variation and others with phylogeny. To make predictions more continuously across the eastern USA we combined this model with data from the large-scale Forest Inventory and Analysis survey to estimate traits for ~1.2 million trees. The combined model exhibited significant deviations in predictions from both species-only and environment-only models with variation in the direction and magnitude of these differences among ecoregions. These predictions demonstrate the importance of modeling both intra- and interspecific variation to understand and predict large scale gradients in species and ecosystem traits.


2019 ◽  
Vol 46 (3) ◽  
pp. 213 ◽  
Author(s):  
Petra D'Odorico ◽  
Carmen Emmel ◽  
Andrew Revill ◽  
Frank Liebisch ◽  
Werner Eugster ◽  
...  

To include within-canopy leaf acclimation responses to light and other resource gradients in photosynthesis modelling, it is imperative to understand the variation of leaf structural, biochemical and physiological traits from canopy top to bottom. In the present study, leaf photosynthetic traits for top and bottom canopy leaves, canopy structure and light profiles, were measured over one growing season for two contrasting crop types, winter barley (Hordeum vulgare L.) and rape seed (Brassica napus L.). With the exception of quantum yield, other traits such as maximum photosynthetic capacity (Amax), dark respiration, leaf nitrogen and chlorophyll contents, and leaf mass per area, showed consistently higher (P<0.05) values for top leaves throughout the growing season and for both crop types. Even though Amax was higher for top leaves, the bottom half of the canopy intercepted more light and thus contributed the most to total canopy photosynthesis up until senescence set in. Incorporating this knowledge into a simple top/bottom-leaf upscaling scheme, separating top and bottom leaves, resulted in a better match between estimated and measured total canopy photosynthesis, compared with a one-leaf upscaling scheme. Moreover, aggregating to daily and weekly temporal resolutions progressively increased the linearity of the leaf photosynthetic responses to light for top leaves.


Sign in / Sign up

Export Citation Format

Share Document