scholarly journals Vertical patterns of photosynthesis and related leaf traits in two contrasting agricultural crops

2019 ◽  
Vol 46 (3) ◽  
pp. 213 ◽  
Author(s):  
Petra D'Odorico ◽  
Carmen Emmel ◽  
Andrew Revill ◽  
Frank Liebisch ◽  
Werner Eugster ◽  
...  

To include within-canopy leaf acclimation responses to light and other resource gradients in photosynthesis modelling, it is imperative to understand the variation of leaf structural, biochemical and physiological traits from canopy top to bottom. In the present study, leaf photosynthetic traits for top and bottom canopy leaves, canopy structure and light profiles, were measured over one growing season for two contrasting crop types, winter barley (Hordeum vulgare L.) and rape seed (Brassica napus L.). With the exception of quantum yield, other traits such as maximum photosynthetic capacity (Amax), dark respiration, leaf nitrogen and chlorophyll contents, and leaf mass per area, showed consistently higher (P<0.05) values for top leaves throughout the growing season and for both crop types. Even though Amax was higher for top leaves, the bottom half of the canopy intercepted more light and thus contributed the most to total canopy photosynthesis up until senescence set in. Incorporating this knowledge into a simple top/bottom-leaf upscaling scheme, separating top and bottom leaves, resulted in a better match between estimated and measured total canopy photosynthesis, compared with a one-leaf upscaling scheme. Moreover, aggregating to daily and weekly temporal resolutions progressively increased the linearity of the leaf photosynthetic responses to light for top leaves.

2008 ◽  
Vol 20 (1) ◽  
pp. 3 ◽  
Author(s):  
K. HAKALA ◽  
A.O. HANNUKKALA ◽  
E. HUUSELA-VEISTOLA

A longer growing season and higher accumulated effective temperature sum (ETS) will improve crop production potential in Finland. The production potential of new or at present underutilised crops (e.g. maize (Zea mays L.), oilseed rape (Brassica napus L.), lucerne (Medicago sativa L.)) will improve and it will be possible to grow more productive varieties of the currently grown crops (spring wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), oats (Avena sativa L.)). Also cultivation of autumn sown crops could increase if winters become milder and shorter, promoting overwintering success. Climatic conditions may on the other hand become restrictive in many ways. For example, early season droughts could intensify because of higher temperatures and consequent higher evaporation rates. Current low winter temperatures and short growing season help restrict the development and spread of pests and pathogens, but this could change in the future. Longer growing seasons, warmer autumns and milder winters may initiate new problems with higher occurrences of weeds, pests and pathogens, including new types of viruses and virus vectors. Anoxia of overwintering crops caused by ice encasement, and physical damage caused by freezing and melting of water over the fields may also increase. In this study we identify the most likely changes in crop species and varieties in Finland and the pest and pathogen species that are most likely to create production problems as a result of climate change during this century.;


Author(s):  
O. A. Zadorozhna ◽  
T. P. Shyianova ◽  
M.Yu. Skorokhodov

Seed longevity of 76 spring barley gene pool samples (Hordeum vulgare L. subsp. distichon, convar. distichon: 56 nutans Schubl., two deficience (Steud.) Koern., two erectum Rode ex Shuebl., two medicum Koern.; convar. nudum (L.) A.Trof.: one nudum L. та subsp. vulgare: convar. vulgare: nine pallidum Ser., three rikotense Regel.; convar. coeleste (L.) A.Trof.: one coeleste (L.) A.Trof.) from 26 countries, 11 years and four places of reproduction was analyzed. Seeds with 5–8% moisture content were stored in chamber with unregulated and 4oC temperature. The possibility of seed storage under these conditions for at least 10 years without significant changes in germination has been established. The importance of meteorological conditions in the formation and ripening of seeds for their longevity is confirmed. The relationship between the decrease of barley seeds longevity and storage conditions, amount of rainfall, temperature regime during the growing season of plants is discussed.


1997 ◽  
Vol 62 ◽  
Author(s):  
R. Samson ◽  
S. Follens ◽  
R. Lemeur

A  multi-layer model (FORUG) was developed, to simulate the canopy  photosynthesis of a mixed deciduous forest during the growing season.  Measured photosynthesis parameters, for beech (Fagus  sylvatica), oak (Quercus  robur) and ash (Fraxinus  excelsior), were used as input to the model. This  information at the leaf level is then scaled up to the level of the canopy,  taking into account the radiation profiles (diffuse and direct PAR) in the  canopy, the vertical LAI distribution, the evolution of the LAI and the  photosynthesis parameters during the growing season, and the temperature  dependence of the latter parameters.


Author(s):  
Hammad A Khan ◽  
Yukiko Nakamura ◽  
Robert T Furbank ◽  
John R Evans

Abstract A growing number of leaf traits can be estimated from hyperspectral reflectance data. These include structural and compositional traits, such as leaf mass per area (LMA) and nitrogen and chlorophyll content, but also physiological traits such a Rubisco carboxylation activity, electron transport rate, and respiration rate. Since physiological traits vary with leaf temperature, how does this impact on predictions made from reflectance measurements? We investigated this with two wheat varieties, by repeatedly measuring each leaf through a sequence of temperatures imposed by varying the air temperature in a growth room. Leaf temperatures ranging from 20 °C to 35 °C did not alter the estimated Rubisco capacity normalized to 25 °C (Vcmax25), or chlorophyll or nitrogen contents per unit leaf area. Models estimating LMA and Vcmax25/N were both slightly influenced by leaf temperature: estimated LMA increased by 0.27% °C–1 and Vcmax25/N increased by 0.46% °C–1. A model estimating Rubisco activity closely followed variation associated with leaf temperature. Reflectance spectra change with leaf temperature and therefore contain a temperature signal.


2016 ◽  
Vol 9 (11) ◽  
pp. 4227-4255 ◽  
Author(s):  
Bradley O. Christoffersen ◽  
Manuel Gloor ◽  
Sophie Fauset ◽  
Nikolaos M. Fyllas ◽  
David R. Galbraith ◽  
...  

Abstract. Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ε, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.


2008 ◽  
Vol 24 (2) ◽  
pp. 121-133 ◽  
Author(s):  
Satomi Shiodera ◽  
Joeni S. Rahajoe ◽  
Takashi Kohyama

Abstract:The relationship between leaf longevity and other leaf traits was compared among different life-form categories (trees, herbs, climbers and epiphytes) of 101 plant species in a tropical montane forest on Mt. Halimun, West Java, Indonesia. We applied the Cox proportional hazards regression to estimate the leaf longevity of each species from 30 mo of census data. We examined whether estimated longevity was explained by either species life-form categories, taxonomic groupings (eudicots, monocots, magnoliids and chloranthales, and ferns) or such leaf traits as leaf area, leaf mass per area (LMA), mass-based leaf nitrogen, penetrometer reading, condensed-tannin-free total phenolics and condensed tannin. There was a wide-ranged interspecific variation in leaf longevity, mostly 10–50 mo, similarly across life-form categories. LMA showed a strong positive influence on leaf longevity. We found that relationships between leaf longevity and some leaf traits were different among various life forms. Trees tended to have high LMA, while climbers tended to have low LMA at the same leaf longevity. We hypothesize that such difference among life forms reflects shoot architecture characteristics. Multi-shoot trees with branching architecture need to have self-supporting leaves, whereas semi-epiphytic climbers can maintain relatively low biomass investment to leaves hanging or relying upon the mechanical support from host plants.


2014 ◽  
Vol 66 (2) ◽  
pp. 615-627
Author(s):  
J. Kołodziejek

The morphological, anatomical and biochemical traits of the leaves of yellow foxglove (Digitalis grandiflora Mill.) from two microhabitats, forest interior (full shade under oak canopy) and forest edge (half shade near shrubs), were studied. The microhabitats differed in the mean levels of available light, but did not differ in soil moisture. The mean level of light in the forest edge microhabitat was significantly higher than in the forest interior. Multivariate ANOVA was used to test the effects of microhabitat. Comparison of the available light with soil moisture revealed that both factors significantly influenced the morphological and anatomical variables of D. grandiflora. Leaf area, mass, leaf mass per area (LMA), surface area per unit dry mass (SLA), density and thickness varied greatly between leaves exposed to different light regimes. Leaves that developed in the shade were larger and thinner and had a greater SLA than those that developed in the half shade. In contrast, at higher light irradiances, at the forest edge, leaves tended to be thicker, with higher LMA and density. Stomatal density was higher in the half-shade leaves than in the full-shade ones. LMA was correlated with leaf area and mass and to a lesser extent with thickness and density in the forest edge microsite. The considerable variations in leaf density and thickness recorded here confirm the very high variation in cell size and amounts of structural tissue within species. The leaf plasticity index (PI) was the highest for the morphological leaf traits as compared to the anatomical and biochemical ones. The nitrogen content was higher in the ?half-shade leaves? than in the ?shade leaves?. Denser leaves corresponded to lower nitrogen (N) contents. The leaves of plants from the forest edge had more potassium (K) than leaves of plants from the forest interior on an area basis but not on a dry mass basis; the reverse was true for phosphorus.


2007 ◽  
Vol 37 (9) ◽  
pp. 1714-1722 ◽  
Author(s):  
Heather M. Joesting ◽  
Brian C. McCarthy ◽  
Kim J. Brown

Restoration attempts to reintroduce American chestnut trees to the eastern deciduous forest by means of a disease-resistant Chinese–American hybrid seed are in progress. Knowing the light conditions required for optimum seedling performance is necessary to maximize the success of reintroduction. American chestnut ( Castanea dentata (Marsh.) Borkh.) seedlings were planted in two replicate forests in Vinton County, Ohio, in areas that had been thinned (more available light) and in control areas (intact canopy, less available light). The photosynthetic capacity of 12 seedlings per treatment was assessed using an infrared gas-exchange analyzer. Seedlings in the thinned treatment reached light-saturating rates of photosynthesis at an irradiance level approximately 33% higher than did the seedlings in the control treatment. Seedlings grown in the thinned treatment had a significantly greater maximum rate of photosynthesis (Amax), dark respiration rate (Rd), and daily carbon gain per seedling than seedlings grown in the control treatment. The light compensation point (LCP), quantum efficiency (ϕ), leaf mass per area (LMA), and leaf nitrogen concentration per unit leaf area (Narea) were not significantly different between treatments. American chestnut seedlings in the thinned treatment clearly maximize leaf-level photosynthetic capacity. These results will aid land managers in planning reintroduction trials by providing information on the light conditions required for maximum seedling success.


2004 ◽  
Vol 44 (12) ◽  
pp. 1205 ◽  
Author(s):  
R. K. Khangura ◽  
M. J. Barbetti

Three different times of sowing in conjunction with various fungicide treatments were evaluated for the management of blackleg in canola (Brassica napus L.) variety Karoo. The trials were conducted at 4 different locations in Western Australia: East Chapman, Merredin, Wongan Hills and Mt Barker, representing a range of environmental conditions. The first time of sowing was at the break of the season followed by 2 subsequent sowings about 3 and 6 weeks later. Blackleg severity was significantly reduced by 14% when sowing was delayed until the end of June or early July, however, there were yield penalties due to the shortened growing season. Yield losses from blackleg were 16, 38 and 34% for mid-May, early to mid-June and end June to early July sown crops, respectively. All the fungicide treatments substantially reduced blackleg severity and increased yields at all the locations except for East Chapman (low rainfall site). The maximum protection fungicide treatment (Jockey seed dressing at 6.6 g a.i./kg seed + Impact in-furrow at 100 g a.i./ha + 3 foliar applications of flusilazole at 100 g a.i/ha) improved seed yield by 47, 56, 46 and 16% at Merredin, Wongan Hills and Mt Barker and East Chapman, respectively, compared with the nil treatment. Averaged over time of sowing and locations, the treatments of Jockey and Impact reduced disease severities by 20 and 25% and increased seed yields by 19 and 24%, respectively. There is potential for some other fungicide treatments, such as seed dressing with Jockey in combination with foliar application of either flusilazole or prochloraz, for the control of blackleg. These investigations suggest that damage from blackleg, in some areas during some seasons, could be minimised by sowing canola crops as early as possible before the onset of maturation of pseudothecia thus avoiding major ascospore showers at the seedling stage of maximum susceptibility. However, in case of a late break of season, fungicide protection may be essential to minimise losses from blackleg, particularly if sowing moderately susceptible cultivars under moderate to high disease pressure situations.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 318
Author(s):  
Guangman Song ◽  
Quan Wang ◽  
Jia Jin

A clear understanding of the dynamics of photosynthetic capacity is crucial for accurate modeling of ecosystem carbon uptake. However, such dynamical information is hardly available and has dramatically impeded our understanding of carbon cycles. Although tremendous efforts have been made in coupling the dynamic information of photosynthetic capacity into models, using “proxies” rooted from the close relationships between photosynthetic capacity and other available leaf parameters remains the popular selection. Unfortunately, no consensus has yet been reached on such “proxies”, leading them only applicable to limited cases. In this study, we aim to identify if there are close relationships between the photosynthetic capacity (represented by the maximum carboxylation rate, Vcmax) and leaf traits for mature broadleaves within a cold temperature deciduous forest. This is based on a long-term in situ dataset including leaf chlorophyll content (Chl), leaf nitrogen concentration (Narea, Nmass), leaf carbon concentration (Carea, Cmass), equivalent water thickness (EWT), leaf mass per area (LMA), and leaf gas exchange measurements from which Vcmax was derived, for both sunlit and shaded leaves during leaf mature periods from 2014 to 2019. The results show that the Vcmax values of sunlit and shaded leaves were relatively stable during these periods, and no statistically significant interannual variations occurred (p > 0.05). However, this is not applicable to specific species. Path analysis revealed that Narea was the major contributor to Vcmax for sunlit leaves (0.502), while LMA had the greatest direct relationship with Vcmax for shaded leaves (0.625). The LMA has further been confirmed as a primary proxy if no leaf type information is available. These findings provide a promising way to better understand photosynthesis and to predict carbon and water cycles in temperate deciduous forests.


Sign in / Sign up

Export Citation Format

Share Document