A framework for big data pre-processing and search optimization using HMGA-ACO: a hierarchical optimization approach

2018 ◽  
Vol 41 (3) ◽  
pp. 183-194
Author(s):  
K. V. Rama Satish ◽  
N. P. Kavya
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1955
Author(s):  
Md Jubaer Hossain Pantho ◽  
Pankaj Bhowmik ◽  
Christophe Bobda

The astounding development of optical sensing imaging technology, coupled with the impressive improvements in machine learning algorithms, has increased our ability to understand and extract information from scenic events. In most cases, Convolution neural networks (CNNs) are largely adopted to infer knowledge due to their surprising success in automation, surveillance, and many other application domains. However, the convolution operations’ overwhelming computation demand has somewhat limited their use in remote sensing edge devices. In these platforms, real-time processing remains a challenging task due to the tight constraints on resources and power. Here, the transfer and processing of non-relevant image pixels act as a bottleneck on the entire system. It is possible to overcome this bottleneck by exploiting the high bandwidth available at the sensor interface by designing a CNN inference architecture near the sensor. This paper presents an attention-based pixel processing architecture to facilitate the CNN inference near the image sensor. We propose an efficient computation method to reduce the dynamic power by decreasing the overall computation of the convolution operations. The proposed method reduces redundancies by using a hierarchical optimization approach. The approach minimizes power consumption for convolution operations by exploiting the Spatio-temporal redundancies found in the incoming feature maps and performs computations only on selected regions based on their relevance score. The proposed design addresses problems related to the mapping of computations onto an array of processing elements (PEs) and introduces a suitable network structure for communication. The PEs are highly optimized to provide low latency and power for CNN applications. While designing the model, we exploit the concepts of biological vision systems to reduce computation and energy. We prototype the model in a Virtex UltraScale+ FPGA and implement it in Application Specific Integrated Circuit (ASIC) using the TSMC 90nm technology library. The results suggest that the proposed architecture significantly reduces dynamic power consumption and achieves high-speed up surpassing existing embedded processors’ computational capabilities.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 49990-50002 ◽  
Author(s):  
Qian Tao ◽  
Chunqin Gu ◽  
Zhenyu Wang ◽  
Joseph Rocchio ◽  
Weiwen Hu ◽  
...  

2016 ◽  
Vol 7 (3) ◽  
pp. 50-70 ◽  
Author(s):  
Nidhi Arora ◽  
Hema Banati

Various evolving approaches have been extensively applied to evolve densely connected communities in complex networks. However these techniques have been primarily single objective optimization techniques, which optimize only a specific feature of the network missing on other important features. Multiobjective optimization techniques can overcome this drawback by simultaneously optimizing multiple features of a network. This paper proposes MGSO, a multiobjective variant of Group Search Optimization (GSO) algorithm to globally search and evolve densely connected communities. It uses inherent animal food searching behavior of GSO to simultaneously optimize two negatively correlated objective functions and overcomes the drawbacks of single objective based CD algorithms. The algorithm reduces random initializations which results in fast convergence. It was applied on 6 real world and 33 synthetic network datasets and results were compared with varied state of the art community detection algorithms. The results established show the efficacy of MGSO to find accurate community structures.


Author(s):  
James K. Hopkins ◽  
Brent W. Spranklin ◽  
Satyandra K. Gupta

Physical parameters of modules and gait parameters affect the overall snake-inspired robot performance. Hence the system-level optimization model has to concurrently optimize the module parameters and the gait. The equations of motion associated with the rectilinear gait are quite complex due to the changing topology of the rectilinear gait. Embedding these equations in the system-level optimization model leads to a computationally challenging formulation. This paper presents a system-level optimization model that utilizes a hierarchical optimization approach and meta-models of the pre-computed optimal gaits to reduce the complexity of the optimization model. This approach enabled us to use an experimentally validated physics-based model of the rectilinear gait and yet at the same time enabled us to create a system-level optimization model with a manageable complexity. A detailed case study is presented to show the importance of concurrently optimizing the module parameters and the gait using our model to obtain the optimal performance for a given mission.


Sign in / Sign up

Export Citation Format

Share Document