OPTIMAL PERFORMANCE-BASED SEISMIC DESIGN USING MODAL PUSHOVER ANALYSIS

2006 ◽  
Vol 10 (1) ◽  
pp. 73-96 ◽  
Author(s):  
DONALD E. GRIERSON* ◽  
YANGLIN GONG ◽  
LEI XU
2020 ◽  
Vol 156 ◽  
pp. 03005
Author(s):  
Lukman Murdiansyah ◽  
Robby Permata ◽  
Donald Essen

This paper presents an evaluation study of the performance of reinforced concrete arch bridge structures under earthquake load. The study is aimed to investigate the seismic performance of Wreksodiningrat Bridge, located in the province of Yogyakarta, Indonesia. This bridge is a three spans reinforced concrete arch bridge with a main span length of 75 m and two side spans with a length of 35 m, respectively. This study is a part of a large project carried out by the Ministry of Public Works to study the impact of the new 2016 Indonesia Seismic Design Code for Bridges (SNI 2833:2016). The main objective of this paper is to determine the displacement demands due to earthquake load based on the new seismic code design for bridges, SNI 2833:2016. In addition, demand capacity ratios (D/C) of the main structural components, such as the compression arch and main column (pier) at the fixed support, are also reviewed in this paper. The analysis was carried out using nonlinear modal pushover analysis. The arch bridge modeling is three dimensional, where structural elements such as beams, columns, and compression arches are modeled as frame elements. The plastic hinges are modeled as fiber hinges with unconfined and confined concrete material stress-strain relationship following Mander formula. The analysis result shows that the displacement demands of the bridge are 2.9 cm and 20 cm in the longitudinal and transverse direction, respectively. The D/C ratios of the compression arch due to demand earthquake load are 0.74 and 0.95 in the longitudinal and transverse direction of the bridge, while the D/C ratios of the pier are 0.15 and 0.80 in the longitudinal and transverse direction. Based on the above results, it is concluded that the studied bridge is able to withstand the seismic load requirements in the new Indonesia Seismic Design Code.


2011 ◽  
Vol 255-260 ◽  
pp. 806-810
Author(s):  
Biao Wei ◽  
Qing Yuan Zeng ◽  
Wei An Liu

Taking one irregular continuous bridge as an example, modal pushover analysis (MPA) has been conducted to judge whether it would be applicable for seismic analysis of irregular bridge structures. The bridge’s seismic demand in the transverse direction has been determined through two different methods, inelastic time history analysis (ITHA) and MPA respectively. The comparison between those two results indicates that MPA would be suitable only for bridges under elastic or slightly damaged state. Finally, some modifications are used to improve the MPA’s scope of application, and the results illustrate that the adapted MPA will be able to estimate bridges’ seismic demands to some extent.


2010 ◽  
Vol 10 (01) ◽  
pp. 111-126 ◽  
Author(s):  
S. W. LIU ◽  
Y. P. LIU ◽  
S. L. CHAN

Nonlinear static (pushover) analysis is an effective and simple tool for evaluating the seismic response of structures and offers an attractive choice for the performance-based design. As such, it has generally been used in modern design due to its practicality. However, the nonlinear plastic design method consumes extensive computational effort for practical structures under numerous load cases. Thus, an efficient element capturing the nonlinear behavior of a beam-column will be useful. In this paper, the authors propose a practical pushover analysis procedure using a single element per member for seismic design. As an improvement to previous research works, both P – Δ and P – δ effects as well as initial imperfections in global and member levels are considered. Therefore, the section capacity check without the assumption of effective length is adequate for present design and the conventional individual element design is avoided. The uncertainty of the buckling effects and effective length method can be eliminated and so a more economical design can be achieved. Two benchmark steel frames of three-storey and nine-storey in FEMA 440 were analyzed to illustrate the validity of the proposed method.


Author(s):  
Hamid Moharrami

In this chapter, the reader gets acquainted with the philosophy of performance-based design, its principles, and an overview of the procedures for performance evaluation of structures. The essential prerequisites of optimal performance-based design, including nonlinear analysis, optimization algorithms, and nonlinear sensitivity analysis, are introduced. The methods of nonlinear analysis and optimization are briefly presented, and the formulation of optimal performance-based design with emphasis on deterministic type, rather than probabilistic- (or reliability)-based formulation is discussed in detail. It is revealed how real performance-based design is tied to optimization, and the reason is given for why, without optimization algorithms, multilevel performance-based design is almost impossible.


Author(s):  
Arzhang Alimoradi ◽  
Shahram Pezeshk ◽  
Christopher Foley

The chapter provides an overview of optimal structural design procedures for seismic performance. Structural analysis and design for earthquake effects is an evolving area of science; many design philosophies and concepts have been proposed, investigated, and practiced in the past three decades. The chapter briefly introduces some of these advancements first, as their understanding is essential in a successful application of optimal seismic design for performance. An emerging trend in seismic design for optimal performance is speculated next. Finally, a state-of-the-art application of evolutionary algorithms in probabilistic performance-based seismic design of steel moment frame buildings is described through an example. In order to follow the concepts of this chapter, the reader is assumed equipped with a basic knowledge of structural mechanics, dynamics of structures, and design optimizations.


2018 ◽  
Vol 144 (3) ◽  
pp. 04018006
Author(s):  
Amir Saedi-Daryan ◽  
Sahman Soleimani ◽  
Masoud Hasanzadeh

2003 ◽  
Vol 32 (3) ◽  
pp. 417-442 ◽  
Author(s):  
Chatpan Chintanapakdee ◽  
Anil K. Chopra

Sign in / Sign up

Export Citation Format

Share Document