scholarly journals Modal pushover analysis on reinforced concrete arch bridge to estimate seismic responses

2020 ◽  
Vol 156 ◽  
pp. 03005
Author(s):  
Lukman Murdiansyah ◽  
Robby Permata ◽  
Donald Essen

This paper presents an evaluation study of the performance of reinforced concrete arch bridge structures under earthquake load. The study is aimed to investigate the seismic performance of Wreksodiningrat Bridge, located in the province of Yogyakarta, Indonesia. This bridge is a three spans reinforced concrete arch bridge with a main span length of 75 m and two side spans with a length of 35 m, respectively. This study is a part of a large project carried out by the Ministry of Public Works to study the impact of the new 2016 Indonesia Seismic Design Code for Bridges (SNI 2833:2016). The main objective of this paper is to determine the displacement demands due to earthquake load based on the new seismic code design for bridges, SNI 2833:2016. In addition, demand capacity ratios (D/C) of the main structural components, such as the compression arch and main column (pier) at the fixed support, are also reviewed in this paper. The analysis was carried out using nonlinear modal pushover analysis. The arch bridge modeling is three dimensional, where structural elements such as beams, columns, and compression arches are modeled as frame elements. The plastic hinges are modeled as fiber hinges with unconfined and confined concrete material stress-strain relationship following Mander formula. The analysis result shows that the displacement demands of the bridge are 2.9 cm and 20 cm in the longitudinal and transverse direction, respectively. The D/C ratios of the compression arch due to demand earthquake load are 0.74 and 0.95 in the longitudinal and transverse direction of the bridge, while the D/C ratios of the pier are 0.15 and 0.80 in the longitudinal and transverse direction. Based on the above results, it is concluded that the studied bridge is able to withstand the seismic load requirements in the new Indonesia Seismic Design Code.

2010 ◽  
Vol 452-453 ◽  
pp. 517-520 ◽  
Author(s):  
Bai Tao Sun ◽  
Qiang Zhou ◽  
Pei Lei Yan

The Wenchuan earthquake occurred on May 12, 2008 (Beijing Time) caused great economical loss and large amount of buildings were destroyed. Many of single-story reinforced concrete industrial buildings in Hanwang town located in the highly seismic region were damaged, and the damaging phenomenons are very typical. According to the damage survey and analysis of typical seismic damage for the single-story reinforced concrete industrial buildings located in Hanwang town, the damage distribution and failure characters of these buildings are summarized in this paper. The single-story reinforced concrete industrial buildings which were designed according to current seismic design code have better earthquake resistant behavior than those old single-story reinforced concrete industrial buildings and the damaging phenomenon show some new features. Finally, combining current seismic design code of our country and the earthquake damage lessons, some reasonable suggestions on the work of seismic strengthening and earthquake resistant design of the single-story reinforced concrete industrial buildings have been given.


2021 ◽  
Vol 21 (2) ◽  
pp. 81-90
Author(s):  
Heunggyoo Oh ◽  
Sehong Min

As per the revisions to the Korean Building Code and the Seismic Design Code for fire protection systems in accordance with the Common Applications of the Seismic Design Code by the Ministry of the Interior and Safety, earthquake load and structural safety of a non-structural element are considered as important parameters for a fire protection system. In Richter scale 5.0 or higher earthquake damage cases occurring in Gyeongju (2016) and Pohang (2017), walls and hydrant boxes were broken or deformed such that their doors could not be opened. Therefore, the breakage, deformation, and detachment of hydrants and internal devices without the seismic design caused malfunction and increased the fire risk. In this study, the earthquake load was calculated according to the seismic design regulation on the hydrant box and the structural stability was verified by 3D model review, structural analysis simulation, the structural member, and the anchorage for performance. Moreover, an optimized seismic design plan was proposed by analyzing and comparing the simulation result for the factors governing the seismic design performance of a fire hydrant box.


2012 ◽  
Vol 178-181 ◽  
pp. 2329-2332
Author(s):  
Chang Jiang Shao ◽  
Hua Ping Yang ◽  
Yong Jiu Qian

New requirement is claimed for the seismic design method of long-span railway bridges with the rapid development of high-speed railway construction in China during the last decade. However, the present design code of our country seems not keep pace with the engineering practice. The existing method, although embodying the philosophy of performance-based earthquake resistance design framework, in ‘the seismic design code of railway engineering’ is only applicable to those girder bridges with spans smaller than 150m. Therefore, the authors introduce the anti-seismic design measures of highway bridges from the Current China Specification to check the seismic safety of a long-span railway arch bridge as an applying example. Different seismic fortification criterions and property objects of the structural system and components are supplied in order to optimize the anti-seism performance of this bridge. The numerical results show that this kind of approach is helpful to improve the dynamical properties and seismic performances of large span railway bridges.


2014 ◽  
Vol 10 (3) ◽  
pp. 36-47 ◽  
Author(s):  
Viorel Popa

Abstract In an effort to improve the harmonization of the Romanian design codes with the Eurocodes, the revision of the Seismic Design Code, P100-1, started in April 2010 and ended in September 2013. The main issues addressed during the revision process are presented in this paper. They include re-outlining the fundamental requirements for seismic design, revision of the seismic action, improvement of the specific provisions for the design of reinforced concrete, steel, composite, wood and masonry structures and non-structural components. This paper focuses on the specific provisions for reinforced concrete structures but general information about the fundamental requirements and the seismic action are presented as well.


2011 ◽  
Vol 255-260 ◽  
pp. 806-810
Author(s):  
Biao Wei ◽  
Qing Yuan Zeng ◽  
Wei An Liu

Taking one irregular continuous bridge as an example, modal pushover analysis (MPA) has been conducted to judge whether it would be applicable for seismic analysis of irregular bridge structures. The bridge’s seismic demand in the transverse direction has been determined through two different methods, inelastic time history analysis (ITHA) and MPA respectively. The comparison between those two results indicates that MPA would be suitable only for bridges under elastic or slightly damaged state. Finally, some modifications are used to improve the MPA’s scope of application, and the results illustrate that the adapted MPA will be able to estimate bridges’ seismic demands to some extent.


Sign in / Sign up

Export Citation Format

Share Document