Optimal Performance-Based Seismic Design

Author(s):  
Hamid Moharrami

In this chapter, the reader gets acquainted with the philosophy of performance-based design, its principles, and an overview of the procedures for performance evaluation of structures. The essential prerequisites of optimal performance-based design, including nonlinear analysis, optimization algorithms, and nonlinear sensitivity analysis, are introduced. The methods of nonlinear analysis and optimization are briefly presented, and the formulation of optimal performance-based design with emphasis on deterministic type, rather than probabilistic- (or reliability)-based formulation is discussed in detail. It is revealed how real performance-based design is tied to optimization, and the reason is given for why, without optimization algorithms, multilevel performance-based design is almost impossible.

Author(s):  
Arzhang Alimoradi ◽  
Shahram Pezeshk ◽  
Christopher Foley

The chapter provides an overview of optimal structural design procedures for seismic performance. Structural analysis and design for earthquake effects is an evolving area of science; many design philosophies and concepts have been proposed, investigated, and practiced in the past three decades. The chapter briefly introduces some of these advancements first, as their understanding is essential in a successful application of optimal seismic design for performance. An emerging trend in seismic design for optimal performance is speculated next. Finally, a state-of-the-art application of evolutionary algorithms in probabilistic performance-based seismic design of steel moment frame buildings is described through an example. In order to follow the concepts of this chapter, the reader is assumed equipped with a basic knowledge of structural mechanics, dynamics of structures, and design optimizations.


1994 ◽  
Vol 10 (1) ◽  
pp. 65-79 ◽  
Author(s):  
Gary C. Hart ◽  
Rami M. Elhassan

A performance based design criteria for seismic rehabilitation requires considerable communication with building owners to develop a mutual understanding of the design constraints and the product that is delivered. This communication becomes even more complex when the goal is to minimize the occupant disruption. This paper presents a discussion of two seismic rehabilitation projects in Southern California where minimizing occupant disruption was essential and where the seismic design was a performance based design. One building was a midrise concrete-frame building housing computer facilities and executive personnel. The other building was an unreinforced masonry residence for business and movie professionals. In both situations base isolation was the best design solution.


Author(s):  
M. J. N. Priestley

One of the major developments in seismic design over the past 10 years has been increased emphasis on limit states design, now generally termed Performance Based Engineering. Three techniques - the capacity spectrum approach, the N2 method and direct displacement-based design have now matured to the stage where seismic assessment of existing structures, or design of new structures can be carried out to ensure that particular deformation-based criteria are met. The paper will outline and compare the three methods, and discuss them in the context of traditional force-based seismic design and earlier design approaches which contained some elements of performance based design. Factors defining different performance states will be discussed, including the need, not yet achieved, to include residual displacement as a key performance limit. Some emphasis will be placed on soil-related problems, and the incorporation of soil/structure interaction into performance-based design. It will be shown that this is relatively straightforward and results in consistent design solutions not readily available with force-based designs using force-reduction factors.


2012 ◽  
Vol 166-169 ◽  
pp. 734-737
Author(s):  
Hai Tao Wan ◽  
Jian Wei Zhang

Three level and two stage design method is the main seismic design of China, which has continued to use until now. However, the design method lacks specific quantitative performance index of the Reinforced concrete (RC) structure. Comparing with the present internationally advanced performance-based seismic design method, the design method has still a certain gap. In order to develop the performance-based design method at domestic, it is necessary to carry on the refinement to China's performance level of RC structure and quantify essential performance index under different seismic level. In the paper, seismic levels are divided into four seismic levels performance levels of RC structure are divided into four run phase. And then, the story drift angle limit of RC structure in the four run phase is quantified.


Sign in / Sign up

Export Citation Format

Share Document