Hydrodynamic instability of premixed flame propagating in narrow planar channel in the presence of gas flow

2020 ◽  
Vol 24 (2) ◽  
pp. 362-375
Author(s):  
Taisia Miroshnichenko ◽  
Vladimir Gubernov ◽  
Sergey Minaev
RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 34272-34280 ◽  
Author(s):  
Zhenhua Xie ◽  
Zhongqing Yang ◽  
Li Zhang ◽  
Chuncheng Liu

By means of numerical simulation, this paper presents the effects of non-catalytic surface reactions on flame temperature distribution and radical distribution within a 2D micro planar channel.


2012 ◽  
Vol 709 ◽  
pp. 516-542 ◽  
Author(s):  
A. Gruber ◽  
J. H. Chen ◽  
D. Valiev ◽  
C. K. Law

AbstractDirect numerical simulations are performed to investigate the transient upstream propagation (flashback) of premixed hydrogen–air flames in the boundary layer of a fully developed turbulent channel flow. Results show that the well-known near-wall velocity fluctuations pattern found in turbulent boundary layers triggers wrinkling of the initially flat flame sheet as it starts propagating against the main flow direction, and that the structure of the characteristic streaks of the turbulent boundary layer ultimately has an important impact on the resulting flame shape and on its propagation mechanism. It is observed that the leading edges of the upstream-propagating premixed flame are always located in the near-wall region of the channel and assume the shape of several smooth, curved bulges propagating upstream side by side in the spanwise direction and convex towards the reactant side of the flame. These leading-edge flame bulges are separated by thin regions of spiky flame cusps pointing towards the product side at the trailing edges of the flame. Analysis of the instantaneous velocity fields clearly reveals the existence, on the reactant side of the flame sheet, of backflow pockets that extend well above the wall-quenching distance. There is a strong correspondence between each of the backflow pockets and a leading edge convex flame bulge. Likewise, high-speed streaks of fast flowing fluid are found to be always colocated with the spiky flame cusps pointing towards the product side of the flame. It is suggested that the origin of the formation of the backflow pockets, along with the subsequent mutual feedback mechanism, is due to the interaction of the approaching streaky turbulent flow pattern with the Darrieus–Landau hydrodynamic instability and pressure fluctuations triggered by the flame sheet. Moreover, the presence of the backflow pockets, coupled with the associated hydrodynamic instability and pressure–flow field interaction, greatly facilitate flame propagation in turbulent boundary layers and ultimately results in high flashback velocities that increase proportionately with pressure.


2021 ◽  
Author(s):  
◽  
Sahir R. Almuhna

The propagation of fluids through space-time is a truly beautiful and mysterious marvel that humankind has spent nearly all our existence trying to comprehend, understand, manipulate, and master. From waves over water to the Sun and the stars in the sky; fluids prove to be as elementary as they are esoteric, as calming as they are chaotic, and as delicate as they are detrimental. The levity in which fluids propagate can be as swift as the milliseconds it takes to observe hydrodynamic instability in say a shock tube facility, to the hundreds if not thousands of years over which a cosmological event's hydrodynamic instability may evolve. Comprehending, studying, manipulating, and mastering the propagation of fluids, specifically within the realm of fluid mechanics, s.c., hydrodynamic instability (HI), is of paramount prominence to the success of humankind. Today, a group of personnel within the scientific and academic community study the evolution and propagation of hydrodynamic instabilities (HIs) through a vast multitude of avenues for a plethora of applications; the two main avenues being experimentally and computationally. However, the ability to experimentally generate, for example, Asymptotic giant branch (AGB) star within a laboratory is as unattainable as the multiple lifetimes for its hydrodynamic instabilities take to develop and evolve, and study. The necessity of generating numerical simulations which match the experimental results of the growth and morphological evolution of hydrodynamic instabilities is a perfectly idealized way to address the capacious and enduring time scales of the hydrodynamic instabilities mentioned. The goal of this dissertation work is to compare the numerical results of the evolution of HIs with experimental results, generate qualitative and quantitative analyses of how the results differ, and improve upon the numerical methods in which the simulation results are generated. To achieve the goal of this dissertation, the evolution and morphology of the two-dimensional hydrodynamic Shock-Driven Multiphase Instability (SDMI) is investigated through experimental measurements obtained within a shock tube facility. The experimental results are then used to validate the results achieved through simulations which utilize identical initialized parameters to model the experiment. The simulations were performed in the open source software FLASH, which is employed to solve the Multi-Phase Particle-in-Cell (MP-PIC) method with the Piecewise Parabolic Method (PPM) for the SDMI's multispecies gas flow. To gather data on the SDMI's morphological evolution experimentally, the planar laser Mie scattering (PLMS) technique was used to illuminate a cylindrical particle-laden flow field (interface), in 2-D, where high-resolution charged-coupled device (CCD) camera captured cross-sectional images of the interface's evolution. The gas flow itself consisted of a mixture of three different species: nitrogen, air, and water vapor; while the dispersed phase consists of water droplets in gas mixture. Utilizing a Mach number, M [subscript alpha] of 1.67, equivalent to a shock wave velocity, v [subscript sh] of 570 (ms [superscript -1]), data was obtained for two different effective Atwood numbers (particles concentrations), A [subscript t] of 0.0479 and 0.0184, at three time intervals for comparison of the experimental data to the computationally acquired data. The results obtained from the computational and experimental data show good quantitative agreement. For example, average dispersed phase speed measured experimentally is 99.5 [percent] of average calculated speed numerically, also, shape wise numerical distance between two developed vortices in dispersed phase is 93.5 [percent] of those measured experimentally. Qualitatively, the morphology of the dispersed phase shows same evolution in both simulated and experimental results. SDMI can also be seen in the circumstellar medium with the infinite number of morphologies due to the complexity of the hydrodynamics evaluations near AGB stars. An attractive solution shows the pulsation of the AGB star producing hot bubble combined with a shock wave and then interacting with dust shell making different types of instabilities.


2015 ◽  
Author(s):  
Γεώργιος Γιαννακόπουλος

Στόχος της διατριβής είναι η υπολογιστική διερεύνηση της μετάδοσης φλόγας προανάμιξης σε μίγμα αέρα-καυσίμου που βρίσκεται σε ηρεμία και χαρακτηρίζεται από στρωτή ροή, αλλά και υπό την παρουσία τύρβης. Η μελέτη των φαινομένων που λαμβάνουν χώρα κατά τη διάδοση του μετώπου της φλόγας παρουσιάζει ιδιαίτερο ενδιαφέρον, τόσο στα πλαίσια της βασικής έρευνας με στόχο τη βαθύτερη κατανόηση της θερμορευστομηχανικής, όσο και στα πλαίσια βιομηχανικών εφαρμογών, όπως η διάδοση φλόγας προανάμιξης σε κινητήρες έναυσης με σπινθηριστή (Otto), αλλά και σε κινητήρες έναυσης με συμπίεση ομογενοποιημένου (HCCI) ή στρωματοποιημένου (SCCI) μίγματος. Η διερεύνηση πραγματοποιήθηκε με τη μεθοδολογία της απευθείας επίλυσης των εξισώσεων διατήρησης (DNS), δηλαδή χωρίς τη χρήση μοντέλων. Ιδιαίτερη έμφαση δόθηκε στη μελέτη της ταχύτητας διάδοσης του μετώπου της φλόγας, καθώς και στην εξάρτησή της από τη διάταση (stretch) στην οποία αυτό υπόκειται λόγω της σφαιρικής γεωμετρίας, αλλά και εξαιτίας της αλληλεπίδρασης με το τυρβώδες ροϊκό πεδίο. Διενεργήθηκε μεγάλος αριθμός προσομοιώσεων στρωτής φλόγας προανάμιξης με στόχο την πλήρη κατανόηση της προαναφερθείσας εξάρτησης, χρησιμοποιώντας απλοποιημένη και λεπτομερή περιγραφή των χημικών αντιδράσεων. Ακολούθησε συστηματική σύγκριση των αριθμητικών αποτελεσμάτων με αυτά που προέκυψαν από την εφαρμογή της ασυμπτωτικής θεωρίας για φλόγες προανάμιξης υπό διάταση, σε μεγάλο εύρος συνθηκών άκαυστου μίγματος προπανίου-αέρα (πίεση, θερμοκρασία, λόγος ισοδυναμίας). Επίσης, αναγνωρίστηκε η ισο-επιφάνεια στο εσωτερικό της φλόγας, η οποία είναι καταλληλότερη για την περιγραφή των αεροδυναμικών χαρακτηριστικών της. Έχοντας κατανοήσει πλήρως την επίδραση της διάτασης στην ταχύτητα διάδοσης του στρωτού, απόλυτα σφαιρικού μετώπου της φλόγας, στη συνέχεια διενεργήθηκαν προσομοιώσεις σταδιακά αυξανόμενης πολυπλοκότητας. Στόχος αρχικά ήταν η μελέτη της συμπεριφοράς της ταχύτητας και άλλων σημαντικών χαρακτηριστικών της φλόγας υπό την παρουσία φαινομένων υδροδυναμικής αστάθειας (hydrodynamic instability), τα οποία προκαλούνται λόγω της ανομοιογένειας στο ροϊκό πεδίο που επιφέρει η παρουσία εξώθερμων χημικών αντιδράσεων και η συνεπαγόμενη απότομη αύξηση της θερμοκρασίας. Αξιολογήθηκαν οι διάφοροι τρόποι έκφρασης της ταχύτητας της φλόγας και ποσοτικοποιήθηκαν οι διαφορές τους.Τέλος, πραγματοποιήθηκε μια πολυ-παραμετρική ανάλυση μέσω υπολογισμών μεγάλης κλίμακας, για τη μελέτη της αλληλεπίδρασης μεταξύ του μετώπου της φλόγας και του τυρβώδους ροϊκού πεδίου, σε κυκλικές και σφαιρικές γεωμετρίες. Ως κάυσιμο χρησιμοποιήθηκε το αέριο σύνθεσης (syngas), τα χαρακτηρηστικά της καύσης του οποίου δεν είναι ακόμη ευρέως γνωστά. Οι μεταβαλόμενες παράμετροι ήταν η σύσταση του μίγματος (λόγος ισοδυναμίας φ, λόγος CO/H2), αλλά και τα χαρακτηριστικά του τυρβώδους ροϊκού πεδίου (ολοκληρωτική κλίμακα μήκους και ένταση τύρβης). Οι συνήκες που επιλέχθηκαν είναι όμοιες με αυτές που συναντώνται στο Άνω Νεκρό Σημείο (ΑΝΣ) ενός κινητήρα εσωτερικής καύσης. Παρατηρήθηκε σημαντική αύξηση του ρυθμού καύσης για αυξανόμενες τιμές έντασης της τύρβης, μέσω της δημιουργίας πτυχώσεων στην επιφάνεια της φλόγας, ως αποτέλεσμα της αλληλεπίδρασης μεταξύ φλόγας και δινών του ροϊκού πεδίου. Ο μηχανισμός αυτός βρέθηκε να υπερισχύει των τοπικών μεταβολών στην ταχύτητα, που μπορούν να επιφέρουν οι αλλαγές στη σύσταση και στη στοιχειομετρία του μίγματος.


2015 ◽  
Vol 162 (2) ◽  
pp. 345-367 ◽  
Author(s):  
Stephan Schlimpert ◽  
Santosh Hemchandra ◽  
Matthias Meinke ◽  
Wolfgang Schröder

2018 ◽  
Vol 854 ◽  
pp. 261-292
Author(s):  
F. J. Higuera

Electrodynamic fluidization is a technique to generate suspensions of electrically conducting particles using electric forces to overcome their weight. An analysis of electrodynamic fluidization is presented for a monodisperse aerosol of non-coalescing particles of infinite electrical conductivity and negligible inertia suspended in a gas in the gap between two horizontal plate electrodes. A DC voltage is applied between the electrodes that charges the particles initially deposited on the lower electrode and leads to a vertical electric force that lifts the particles and pushes them upwards across the gap. The direction of this force reverses when the particles reach the upper electrode, pushing them downwards until they fall onto the lower electrode and repeat the cycle. Stationary distributions of particles are computed for given values of the applied voltage and the number of suspended particles per unit electrode area. Interparticle collisions play a role when the second of these parameters is of the order of the inverse of the particle cross-section or larger. The electric field induced by the charge of the particles opposes the field due to the applied voltage at the lower electrode and thus sets an upper bound to the number of particles that can be suspended for a given voltage. This bound is attained in the normal operation of a fluidization device, in which there is an excess of particles deposited at the lower electrode, and is computed as a function of the applied voltage. The predictions are compared to experimental results in the literature. A linear stability analysis for dilute aerosols with negligible collision effects shows that the stationary solution becomes unstable when the deposition threshold is approached with a number of suspended particles per unit electrode area larger than a certain critical value. A hydrodynamic instability appears near the lower electrode, where the electric force on a localized accumulation of charged particles leads to an upward gas flow that helps carrying the particles away from the electrode and increases the amplitude of the initial particle accumulation. The instability gives rise to electrohydrodynamic plumes whose dynamics involves collisions, mergers and generation of new plumes.


Sign in / Sign up

Export Citation Format

Share Document