Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway

2016 ◽  
Vol 122 (4) ◽  
pp. 200-213 ◽  
Author(s):  
Ghada A. Abdel-Aleem ◽  
Eman F. Khaleel ◽  
Dalia G. Mostafa ◽  
Lydia K. Elberier
Glia ◽  
2010 ◽  
Vol 58 (15) ◽  
pp. 1881-1892 ◽  
Author(s):  
So-Young Hwang ◽  
Joo-Hyun Shin ◽  
Ji-Sun Hwang ◽  
Song-Yi Kim ◽  
Jin-A Shin ◽  
...  

Perfusion ◽  
2021 ◽  
pp. 026765912110070
Author(s):  
Yan Liu ◽  
Xuyao Zhu ◽  
Xiuxia Tong ◽  
Ziqiang Tan

Introduction: Cerebral ischemia/reperfusion injury (CI/R) is associated with high mortality and remains a large challenge in the clinic. Syringin is a bioactive compound with anti-inflammation, antioxidant, as well as neuroprotective effects. Nevertheless, whether syringin could protect against CI/R injury and its potential mechanism was still unclear. Methods: Rats were randomly divided into five groups: sham group, syringin group, CI/R group, CI/R + syringin group, and CI/R + syringin + LPS (TLR4 agonist) group. The CI/R injury rat model was established by the middle cerebral artery occlusion (MCAO). The learning and memory ability of rats was estimated by the Morris water maze test. Modified neurological severity score test (mNSS) and infarct volume were detected to assess the neuroprotective effect of syringin. ELISA and RT-qPCR were used to analyze the concentration of proinflammation cytokines and the expression of TLR4. Results: CI/R injury induced increased mNSS scores and decreased learning and memory ability of rats. Syringin could significantly protect against CI/R injury as it decreased the cerebral damage and improved the cognitive ability of CI/R rats. Moreover, syringin also reduced neuroinflammation of CI/R injury rats. Additionally, TLR4 was significantly upregulated in CI/R injury rats, which was suppressed by syringin. The activation of TLR4 reversed the neuroprotective effect of syringin in CI/R rats. Conclusion: Syringin decreased the inflammation reaction and cerebral damage in CI/R injury rats. The neuroprotective effect of syringin may be correlated with the inhibition of TLR4.


Molecules ◽  
2015 ◽  
Vol 20 (8) ◽  
pp. 14487-14503 ◽  
Author(s):  
Denis Silachev ◽  
Egor Plotnikov ◽  
Ljubava Zorova ◽  
Irina Pevzner ◽  
Natalia Sumbatyan ◽  
...  

2020 ◽  
Author(s):  
Xiujing Zhang ◽  
Wei Wang ◽  
Jie Tang ◽  
Qin Xie ◽  
Di Ma

Abstract BackgroundTo investigate the effect and possible mechanisms of total saponins from Trillium Tschonoskii Maxim. (TST) on myocardial ischemia reperfusion injury in rat.Methods and ResultsRats were pre-treated with TST in 100 and 200 mg/kg, respectively. After 14 days intragastric administration, the model of myocardial ischemia-reperfusion injury was established by ligation of the left anterior descending coronary artery for 30 min and then releasing the ligated artery for 120 min. The hemodynamic indexes, anti-oxidation index, and the anti-inflammation factors were detected. Pathological changes in myocardia tissue were observed by H&E staining. Apoptosis protein expression of caspase 3, 9, 12, AMPK, phosphorylation AMPK (p-AMPK) and Sirt1 was detected by Western blot. Pretreating the rats with TST dramatically decreased the levels of MDA, TNF-α, IL-6 and IL-1β, increased the levels of SOD and GSH-Px, and the apoptosis protein expression were all significantly decreased. In addition, the protein expression of p-AMPK and Sirt1 were markedly increased in TST pre-treated group. Furthermore, TST pre-treatment also improved the histopathological changes.ConclusionTST protect the myocardium by reducing the levels of inflammation factors, peroxides and cell apoptosis, increasing the anti-oxidase, and improving the pathological changes. The possible mechanism maybe through the activating of the AMPK/Sirt1 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document