Long non-coding RNAs as emerging regulators of miRNAs and epigenetics in diabetes-related chronic kidney disease

Author(s):  
Vishwadeep Shelke ◽  
Ajinath Kale ◽  
Himanshu Sankrityayan ◽  
Hans-Joachim Anders ◽  
Anil Bhanudas Gaikwad
2021 ◽  
pp. 91-95
Author(s):  
Valerie Metzinger-Le Meuth ◽  
Laurent Metzinger

Renal diseases are consecutive to a deregulation of gene expression regulated by non-coding RNAs. These non-coding RNAs were discovered at the turn of the 21st century when it was established that post-transcriptional regulation was performed through small non-coding RNAs, known as microRNAs (miRNAs). Up to 3,000 miRNAs are expressed by human cells. They are small, single-stranded nucleic acids, which trigger translational repression of mRNA by base-pairing with the 3′ untranslated region of their mRNA targets. In addition to miRNA regulation, it was also demonstrated that 60,000 long non-coding RNAs are expressed in the human cell and that they are able to regulate gene expression at all levels. The roles of these various RNA families are just beginning to be understood in the field of nephrology. In the past decade, the authors and various others have published that several miRNAs are deregulated during the onset of chronic kidney disease (CKD) and are associated with cardiovascular damage. This review focuses on miRNA-223 (miR-223) as its expression is increased in vivo in the large vessels of a mouse model of CKD, whereas it is diminished in the serum of both mice and human patients with CKD. In patients, miR-223 expression was correlated with all-cause mortality, as well as cardiovascular and renal events. Molecular clues were given by a multi-omics approach, indicating that miR-223 modulates gene regulation at all levels including mRNA expression, protein amounts, and metabolic molecule accumulation. miR-223 is thus a potential target to prevent or treat complications of CKD pathogenesis.


Author(s):  
Jiwoon Kim ◽  
Ji Sun Nam ◽  
Heejung Kim ◽  
Hye Sun Lee ◽  
Jung Eun Lee

Abstract. Background/Aims: Trials on the effects of cholecalciferol supplementation in type 2 diabetes with chronic kidney disease patients were underexplored. Therefore, the aim of this study was to investigate the effects of two different doses of vitamin D supplementation on serum 25-hydroxyvitamin D [25(OH)D] concentrations and metabolic parameters in vitamin D-deficient Korean diabetes patients with chronic kidney disease. Methods: 92 patients completed this study: the placebo group (A, n = 33), the oral cholecalciferol 1,000 IU/day group (B, n = 34), or the single 200,000 IU injection group (C, n = 25, equivalent to 2,000 IU/day). 52% of the patients had less than 60 mL/min/1.73m2 of glomerular filtration rates. Laboratory test and pulse wave velocity were performed before and after supplementation. Results: After 12 weeks, serum 25(OH)D concentrations of the patients who received vitamin D supplementation were significantly increased (A, -2.4 ± 1.2 ng/mL vs. B, 10.7 ± 1.2 ng/mL vs. C, 14.6 ± 1.7 ng/mL; p < 0.001). In addition, the lipid profiles in the vitamin D injection group (C) showed a significant decrease in triglyceride and a rise in HDL cholesterol. However, the other parameters showed no differences. Conclusions: Our data indicated that two different doses and routes of vitamin D administration significantly and safely increased serum 25(OH)D concentrations in vitamin D-deficient diabetes patients with comorbid chronic kidney disease. In the group that received the higher vitamin D dose, the lipid profiles showed significant improvement, but there were no beneficial effects on other metabolic parameters.


VASA ◽  
2012 ◽  
Vol 41 (3) ◽  
pp. 159-160
Author(s):  
Espinola-Klein ◽  
F. Dopheide ◽  
Gori

Sign in / Sign up

Export Citation Format

Share Document