Fuel choice for energy generation in the Swedish kraft pulp/paper industry

2003 ◽  
Vol 18 (2) ◽  
pp. 16-23
Author(s):  
Robert Lundmark
1988 ◽  
Vol 20 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Rebecca W. Hanmer

The pulp, paper, and paperboard industry in the United States is the larqest industrial user of water with half of the facilities discharging wastewater directly to our Nation's waters. The major pollutants of concern have historically been the conventional pollutants: biochemical oxygen demand (BOD5), total suspended solids (TSS), and pH. Biological treatment systems are currently employed to reduce these pollutants. Sludges generated by these treatment systems have been categorized as nonhazardous and are generally landfilled. Under the Clean Water Act, the Environmental Protection Agency (EPA) has promulgated all the reguired regulations for this industry. The national regulations are applied to individual pulp and paper mills through permits issued by EPA Regional or State staff. Permit limits can be written that are more restrictive than the national regulations to protect local water guality. In its current projects concerning the pulp and paper industry, EPA is focusing on the reduction of toxic pollutants. The Agency is conducting a joint EPA/industry program to study dioxin discharges at bleached kraft mills. The Agency will also undertake a comprehensive review of the pulp and paper regulations in 1988.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 935 ◽  
Author(s):  
Ioannis Charisteidis ◽  
Polykarpos Lazaridis ◽  
Apostolos Fotopoulos ◽  
Eleni Pachatouridou ◽  
Leonidas Matsakas ◽  
...  

Lignin, one of the three main structural biopolymers of lignocellulosic biomass, is the most abundant natural source of aromatics with a great valorization potential towards the production of fuels, chemicals, and polymers. Although kraft lignin and lignosulphonates, as byproducts of the pulp/paper industry, are available in vast amounts, other types of lignins, such as the organosolv or the hydrolysis lignin, are becoming increasingly important, as they are side-streams of new biorefinery processes aiming at the (bio)catalytic valorization of biomass sugars. Within this context, in this work, we studied the thermal (non-catalytic) and catalytic fast pyrolysis of softwood (spruce) and hardwood (birch) lignins, isolated by a hybrid organosolv–steam explosion biomass pretreatment method in order to investigate the effect of lignin origin/composition on product yields and lignin bio-oil composition. The catalysts studied were conventional microporous ZSM-5 (Zeolite Socony Mobil–5) zeolites and hierarchical ZSM-5 zeolites with intracrystal mesopores (i.e., 9 and 45 nm) or nano-sized ZSM-5 with a high external surface. All ZSM-5 zeolites were active in converting the initially produced via thermal pyrolysis alkoxy-phenols (i.e., of guaiacyl and syringyl/guaiacyl type for spruce and birch lignin, respectively) towards BTX (benzene, toluene, xylene) aromatics, alkyl-phenols and polycyclic aromatic hydrocarbons (PAHs, mainly naphthalenes), with the mesoporous ZSM-5 exhibiting higher dealkoxylation reactivity and being significantly more selective towards mono-aromatics compared to the conventional ZSM-5, for both spruce and birch lignin.


Author(s):  
Joicy Micheletto ◽  
Naiara Mariana Fiori Monteiro Sampaio ◽  
Henrique Zavattieri Ruiz ◽  
Lucia Regina Rocha Martins ◽  
Marcus Vinicius de Liz ◽  
...  

The pulp and paper industry is one of world’s largest water consumers, generating high volumes of effluents. The Kraft process produces effluents with high BOD, COD, suspended solids, lignin and a myriad of potentially toxic compounds, which require treatment before discharge into the aquatic environment. Advanced oxidation processes, such as UV/H2O2, have been applied as treatment alternatives because they can destroy many compounds before they mineralize. However, when the oxidation process is incomplete, occurs could be produced by products with high toxicity. This study evaluated the acute toxicity on Daphnia magna of two effluent samples of Kraft pulp mill (KE1 and KE2) treated by UV/H2O2 process. The effects of the pH variation and oxidant concentration on the removal of DOC, total UV-vis spectral area and apparent color were considered to adjust the experiments’ conditions with diluted effluent KE1. Both samples were treated at pH 4.0 and 70 mg L-1 of H2O2 for 40 min, achieving removals of up to 69.4% in apparent color, 73.7% of phenolic compounds and 68.9% of lignin compounds. When the reaction was applied in undiluted effluent samples, the acute toxicity for Daphnia magna decreased for KE1 after 780 min of treatment, whereas KE2 became four times more toxic. The data showed that although the treatment had been efficient considering physics and chemicals parameters, it is necessary follow the oxidative processes with ecotoxicological bioassays to guarantee their safety, since different effluents of the Kraft pulp mill could present different levels of organic compound mineralization.


Author(s):  
Richard H. Meeker ◽  
Majura F. Selekwa

This paper describes recent work to develop an improved approach to control of wood-waste fired boilers, and, in particular, bark-fired boilers commonly in operation in the pulp and paper industry. A brief review of the process and control requirements and common control methods currently employed is followed by a discussion of development of a first-principles boiler model suitable for use in development of a robust controller. A simple nonlinear model for the boiler is developed and used for designing a robust controller that offers better performance in terms of tracking the desired reference point in the face of uncertain variations in the system parameters. The objective of the proposed controller is to increase the responsiveness to load changes, reduce the variability of controlled parameters, and improve efficiency of the boiler (reducing fuel consumption). With hundreds of these boilers in operation at large pulp, paper, and paperboard mills in the U.S., potential net energy savings through efficiency improvement and reduced fuel consumption are substantial, with likely side benefits of reduced emissions and possible reapplication of developments to fossil-fired electric utility boilers, waste incinerators, hog fuel, and biomass boilers.


2011 ◽  
Vol 25 (12) ◽  
pp. 2989-3004 ◽  
Author(s):  
Mahdi Khosravi ◽  
Gagik Badalians Gholikandi ◽  
Amin Soltanzadeh Bali ◽  
Reza Riahi ◽  
Hamid Reza Tashaouei

Sign in / Sign up

Export Citation Format

Share Document