scholarly journals Reliability issues of lead-free solder joints in electronic devices

2019 ◽  
Vol 20 (1) ◽  
pp. 876-901 ◽  
Author(s):  
Nan Jiang ◽  
Liang Zhang ◽  
Zhi-Quan Liu ◽  
Lei Sun ◽  
Wei-Min Long ◽  
...  
Author(s):  
Hiroki Miyauchi ◽  
Qiang Yu ◽  
Tadahiro Shibutani ◽  
Masaki Shiratori

The electronic device equipments using a lot of semiconductors are widespread to all industrial fields. Solder joints are used to mount the electronic chips, such as ceramic resistors and capacitors, on the printed-circuit boards in almost all electronic devices. However, since in many cases the thermal expansion coefficients of electronic parts and PCBs have mismatch, cyclic thermal stress and strain causes solder fatigue. Especially in the power electronic module and car electric module, the evaluation of thermal fatigue life for the chip components is important. It is understood that the fatigue lives of some electronic devices show large scatter in the thermal cycle test, even if their design is the same. The dispersion of main design factors of solder joints is thought as one of these reasons. Moreover, the influence of the dispersion grows when the lead-free solder materials are used in the devices. Therefore, it cannot be bypassed as the main issue for the reliability evaluation in the solder joints. In this study, how the dispersion of design factors influences the fatigue life in lead-free solder joint was investigated by the analytical approach. At first, sensitivity analyses were carried out to study the main effect of the dispersion of each factor on solder joints. And then, the interacting effects between the factors on the reliability were studied by considering the structural asymmetry due to the unbalanced solder joints. FEM analyses were carried out, and the fatigue life in solder joints was calculated from the inelastic strain range. As a result, practical evaluating approach for the fatigue life scatter of solder joints was proposed.


2017 ◽  
Vol 66 (4) ◽  
pp. 1229-1237 ◽  
Author(s):  
P. Wild ◽  
T. Grozinger ◽  
D. Lorenz ◽  
A. Zimmermann

2015 ◽  
Vol 772 ◽  
pp. 284-289 ◽  
Author(s):  
Sabuj Mallik ◽  
Jude Njoku ◽  
Gabriel Takyi

Voiding in solder joints poses a serious reliability concern for electronic products. The aim of this research was to quantify the void formation in lead-free solder joints through X-ray inspections. Experiments were designed to investigate how void formation is affected by solder bump size and shape, differences in reflow time and temperature, and differences in solder paste formulation. Four different lead-free solder paste samples were used to produce solder bumps on a number of test boards, using surface mount reflow soldering process. Using an advanced X-ray inspection system void percentages were measured for three different size and shape solder bumps. Results indicate that the voiding in solder joint is strongly influenced by solder bump size and shape, with voids found to have increased when bump size decreased. A longer soaking period during reflow stage has negatively affectedsolder voids. Voiding was also accelerated with smaller solder particles in solder paste.


Sign in / Sign up

Export Citation Format

Share Document