The effect of targeted resistance training on bench press performance and the alternation of prime mover muscle activation patterns

2020 ◽  
pp. 1-15 ◽  
Author(s):  
Katarzyna Stronska ◽  
Artur Golas ◽  
Michal Wilk ◽  
Adam Zajac ◽  
Adam Maszczyk ◽  
...  
2013 ◽  
Vol 38 ◽  
pp. 63-71 ◽  
Author(s):  
Roland van den Tillaar ◽  
Gertjan Ettema

Abstract The purpose of this study was to compare the kinematics and muscle activation patterns of regular free-weight bench press (counter movement) with pure concentric lifts in the ascending phase of a successful one repetition maximum (1-RM) attempt in the bench press. Our aim was to evaluate if diminishing potentiation could be the cause of the sticking region. Since diminishing potentiation cannot occur in pure concentric lifts, the occurrence of a sticking region in this type of muscle actions would support the hypothesis that the sticking region is due to a poor mechanical position. Eleven male participants (age 21.9 ~ 1.7 yrs, body mass 80.7 ~ 10.9 kg, body height 1.79 ~ 0.07 m) conducted 1-RM lifts in counter movement and in pure concentric bench presses in which kinematics and EMG activity were measured. In both conditions, a sticking region occurred. However, the start of the sticking region was different between the two bench presses. In addition, in four of six muscles, the muscle activity was higher in the counter movement bench press compared to the concentric one. Considering the findings of the muscle activity of six muscles during the maximal lifts it was concluded that the diminishing effect of force potentiation, which occurs in the counter movement bench press, in combination with a delayed muscle activation unlikely explains the existence of the sticking region in a 1-RM bench press. Most likely, the sticking region is the result of a poor mechanical force position.


Author(s):  
Jesualdo Cuevas-Aburto ◽  
Danica Janicijevic ◽  
Alejandro Pérez-Castilla ◽  
Luis J. Chirosa-Ríos ◽  
Amador García-Ramos

Author(s):  
Roland van den Tillaar ◽  
Eirik Lindset Kristiansen ◽  
Stian Larsen

This study compared the kinetics, barbell, and joint kinematics and muscle activation patterns between a one-repetition maximum (1-RM) Smith machine squat and isometric squats performed at 10 different heights from the lowest barbell height. The aim was to investigate if force output is lowest in the sticking region, indicating that this is a poor biomechanical region. Twelve resistance trained males (age: 22 ± 5 years, mass: 83.5 ± 39 kg, height: 1.81 ± 0.20 m) were tested. A repeated two-way analysis of variance showed that Force output decreased in the sticking region for the 1-RM trial, while for the isometric trials, force output was lowest between 0–15 cm from the lowest barbell height, data that support the sticking region is a poor biomechanical region. Almost all muscles showed higher activity at 1-RM compared with isometric attempts (p < 0.05). The quadriceps activity decreased, and the gluteus maximus and shank muscle activity increased with increasing height (p ≤ 0.024). Moreover, the vastus muscles decreased only for the 1-RM trial while remaining stable at the same positions in the isometric trials (p = 0.04), indicating that potentiation occurs. Our findings suggest that a co-contraction between the hip and knee extensors, together with potentiation from the vastus muscles during ascent, creates a poor biomechanical region for force output, and thereby the sticking region among recreationally resistance trained males during 1-RM Smith machine squats.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin Young Ko ◽  
Hayoung Kim ◽  
Joonyoung Jang ◽  
Jun Chang Lee ◽  
Ju Seok Ryu

AbstractAge-related weakness due to atrophy and fatty infiltration in oropharyngeal muscles may be related to dysphagia in older adults. However, little is known about changes in the oropharyngeal muscle activation pattern in older adults. This was a prospective and experimental study. Forty healthy participants (20 older [> 60 years] and 20 young [< 60 years] adults) were enrolled. Six channel surface electrodes were placed over the bilateral suprahyoid (SH), bilateral retrohyoid (RH), thyrohyoid (TH), and sternothyroid (StH) muscles. Electromyography signals were then recorded twice for each patient during swallowing of 2 cc of water, 5 cc of water, and 5 cc of a highly viscous fluid. Latency, duration, and peak amplitude were measured. The activation patterns were the same, in the order of SH, TH, and StH, in both groups. The muscle activation patterns were classified as type I and II; the type I pattern was characterized by a monophasic shape, and the type II comprised a pre-reflex phase and a main phase. The oropharyngeal muscles and SH muscles were found to develop a pre-reflex phase specifically with increasing volume and viscosity of the swallowed fluid. Type I showed a different response to the highly viscous fluid in the older group compared to that in the younger group. However, type II showed concordant changes in the groups. Therefore, healthy older people were found to compensate for swallowing with a pre-reflex phase of muscle activation in response to increased liquid volume and viscosity, to adjust for age-related muscle weakness.


The Knee ◽  
2021 ◽  
Vol 29 ◽  
pp. 500-509
Author(s):  
J.C. Schrijvers ◽  
D. Rutherford ◽  
R. Richards ◽  
J.C. van den Noort ◽  
M. van der Esch ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 448
Author(s):  
Francesco Infarinato ◽  
Paola Romano ◽  
Michela Goffredo ◽  
Marco Ottaviani ◽  
Daniele Galafate ◽  
...  

Background: Overground Robot-Assisted Gait Training (o-RAGT) appears to be a promising stroke rehabilitation in terms of clinical outcomes. The literature on surface ElectroMyoGraphy (sEMG) assessment in o-RAGT is limited. This paper aimed to assess muscle activation patterns with sEMG in subjects subacute post stroke after training with o-RAGT and conventional therapy. Methods: An observational preliminary study was carried out with subjects subacute post stroke who received 15 sessions of o-RAGT (5 sessions/week; 60 min) in combination with conventional therapy. The subjects were assessed with both clinical and instrumental evaluations. Gait kinematics and sEMG data were acquired before (T1) and after (T2) the period of treatment (during ecological gait), and during the first session of o-RAGT (o-RAGT1). An eight-channel wireless sEMG device acquired in sEMG signals. Significant differences in sEMG outcomes were found in the BS of TA between T1 and T2. There were no other significant correlations between the sEMG outcomes and the clinical results between T1 and T2. Conclusions: There were significant functional gains in gait after complex intensive clinical rehabilitation with o-RAGT and conventional therapy. In addition, there was a significant increase in bilateral symmetry of the Tibialis Anterior muscles. At this stage of the signals from the tibialis anterior (TA), gastrocnemius medialis (GM), rectus femoris (RF), and biceps femoris caput longus (BF) muscles of each lower extremity. sEMG data processing extracted the Bilateral Symmetry (BS), the Co-Contraction (CC), and the Root Mean Square (RMS) coefficients. Results: Eight of 22 subjects in the subacute stage post stroke agreed to participate in this sEMG study. This subsample demonstrated a significant improvement in the motricity index of the affected lower limb and functional ambulation. The heterogeneity of the subjects’ characteristics and the small number of subjects was associated with high variability research, functional gait recovery was associated with minimal change in muscle activation patterns.


Sign in / Sign up

Export Citation Format

Share Document