scholarly journals Concussion biomechanics, head acceleration exposure and brain injury criteria in sport: a review

2021 ◽  
pp. 1-29
Author(s):  
Gregory Tierney
Author(s):  
Chimba Mkandawire ◽  
Eric S. Winkel ◽  
Nicholas A. White ◽  
Edward Schatz

Operators of personal watercraft (PWC) can perform maneuvers that may result in riders separating from the moving watercraft; the tested hypothesis was whether substantial brain injury concurrent with substantial facial and skull fractures can occur from contact with the PWC during a fall. The present study reports the potential for AIS2+ facial/skull fractures and AIS2+ traumatic brain injury (TBI) during a generic fall from the PWC in the absence of wave-jumping or other aggressive maneuvers. While it is well known that PWC can be used for wave-jumping which can result in more severe impacts, such impacts are beyond the scope of the present study because of the wide variability in occupant and PWC kinematics and possible impact velocities and orientations. Passenger separation and fall kinematics from both seated and standing positions were analyzed to estimate head impact velocities and possible impact locations on the PWC. A special purpose headform, known as the Facial and Ocular CountermeasUre Safety (FOCUS) device was used to evaluate the potential for facial fractures, skull fractures and TBI. Impacts between the FOCUS headform and the PWC were performed at velocities of 8, 10, and 12 miles per hour at 5 locations near the stern of a PWC. This study reports impact forces for various facial areas, linear and angular head accelerations, and Head Injury Criteria (HIC). The risk for facial fracture and TBI are reported herein. The results of this study indicate that concurrent AIS2 facial fractures, AIS2+ skull fractures, and AIS2+ TBI do not occur during a simple fall from a PWC.


2013 ◽  
Vol 59 ◽  
pp. 109-117 ◽  
Author(s):  
Kirk Hansen ◽  
Nathan Dau ◽  
Florian Feist ◽  
Caroline Deck ◽  
Rémy Willinger ◽  
...  

2013 ◽  
Author(s):  
Erik G. Takhounts ◽  
Matthew J. Craig ◽  
Kevin Moorhouse ◽  
Joe McFadden ◽  
Vikas Hasija
Keyword(s):  

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Máté Hazay ◽  
Imre Bojtár

Purpose: Among the proposed brain injury metrics, Brain Injury Criteria (BrIC) is a promising tool for performing safety assessment of vehicles in the future. In this paper, the available risk curves of BrIC were re-evaluated with the use of reliability analysis and new risk curves were constructed for different injury types based on literature data of tissue-level tolerances. Moreover, the comparison of different injury metrics and their corresponding risk curves were performed. Methods: Tissue-level uncertainties of the effect and resistance were considered by random variables. The variability of the tissue-level predictors was quantified by the finite element reconstruction of 100 frontal crash tests which were performed in Simulated Injury Monitor environment. The applied tests were scaled to given BrIC magnitudes and the injury probabilities were calculated by Monte Carlo simulations. New risk curves were fitted to the observed results using Weibull and Lognormal distribution functions. Results: The available risk curves of diffuse axonal injury (DAI) could be slightly improved, and combined AIS 4+ risk curves were obtained by considering subdural hematoma and contusion as well. The performance of several injury metrics and their risk curves were evaluated based on the observed correlations with the tissue-level predictors. Conclusions: The cumulative strain damage measure and the BrIC provide the highest correlation (R2 = 0.61) and the most reliable risk curve for the evaluation of DAI. Although the observed correlation is smaller for other injury types, the BrIC and the associated reliability analysis-based risk curves seem to provide the best available method for estimating the brain injury risk for frontal crash tests.


2019 ◽  
Vol 10 (2) ◽  
pp. 191-196
Author(s):  
Caroline Deck ◽  
Rémy Willinger

2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Ray W. Daniel ◽  
Steven Rowson ◽  
Stefan M. Duma

The head impact exposure experienced by football players at the college and high school levels has been well documented; however, there are limited data regarding youth football despite its dramatically larger population. The objective of this study was to investigate head impact exposure in middle school football. Impacts were monitored using a commercially available accelerometer array installed inside the helmets of 17 players aged 12–14 years. A total of 4678 impacts were measured, with an average (±standard deviation) of 275 ± 190 impacts per player. The average of impact distributions for each player had a median impact of 22 ± 2 g and 954 ± 122 rad/s2, and a 95th percentile impact of 54 ± 9 g and 2525 ± 450 rad/s2. Similar to the head impact exposure experienced by high school and collegiate players, these data show that middle school football players experience a greater number of head impacts during games than practices. There were no significant differences between median and 95th percentile head acceleration magnitudes experienced during games and practices; however, a larger number of impacts greater than 80 g occurred during games than during practices. Impacts to the front and back of the helmet were most common. Overall, these data are similar to high school and college data that have been collected using similar methods. These data have applications toward youth football helmet design, the development of strategies designed to limit head impact exposure, and child-specific brain injury criteria.


Author(s):  
M. Sotudeh-Chafi ◽  
N. Abolfathi ◽  
A. Nick ◽  
V. Dirisala ◽  
G. Karami ◽  
...  

Traumatic brain injuries (TBIs) involve a significant portion of human injuries resulting from a wide range of civilian accidents as well as many military scenarios. Axonal damage is one of the most common and important pathologic features of traumatic brain injury. Axons become brittle when exposed to rapid deformations associated with brain trauma. Accordingly, rapid stretch of axons can damage the axonal cytoskeleton, resulting in a loss of elasticity and impairment of axoplasmic transport. Subsequent swelling of the axon occurs in discrete bulb formations or in elongated varicosities that accumulate organelles. Ultimately, swollen axons may become disconnected [1]. The shock waves generated by a blast, subject all the organs in the head to displacement, shearing and tearing forces. The brain is especially vulnerable to these forces — the fronts of compressed air waves cause rapid forward or backward movements of the head, so that the brain rattles against the inside of the skull. This can cause subdural hemorrhage and contusions. The forces exerted on the brain by shock waves are known to damage axons in the affected areas. This axonal damage begins within minutes of injury, and can continue for hours or days following the injury [2]. Shock waves are also known to damage the brain at the subcellular level, but exactly how remains unclear. Kato et al., [3] described the effects of a small controlled explosion on rats’ brain tissue. They found that high pressure shock waves led to contusions and hemorrhage in both cortical and subcortical brain regions. Based on their result, the threshold for shock wave-induced brain injury is speculated to be under 1 MPa. This is the first report to demonstrate the pressure-dependent effect of shock wave on the histological characteristics of brain tissue. An important step in understanding the primary blast injury mechanism due to explosion is to translate the global head loads to the loading conditions, and consequently damage, of the cells at the local level and to project cell level and tissue level injury criteria towards the level of the head. In order to reach this aim, we have developed a multi-scale non-linear finite element modeling to bridge the micro- and macroscopic scales and establish the connection between microstructure and effective behavior of brain tissue to develop acceptable injury threshold. Part of this effort has been focused on measuring the shock waves created from a blast, and studying the response of the brain model of a human head exposed to such an environment. The Arbitrary Lagrangian Eulerian (ALE) and Fluid/Solid Interactions (FSI) formulation have been used to model the brain-blast interactions. Another part has gone into developing a validated fiber-matrix based micro-scale model of a brain tissue to reproduce the effective response and to capturing local details of the tissue’s deformations causing axonal injury. The micro-model of the axon and matrix is characterized by a transversely isotropic viscoelastic material and the material model is formulated for numerical implementation. Model parameters are fit to experimental frequency response of the storage and loss modulus data obtained and determined using a genetic algorithm (GA) optimizing method. The results from macro-scale model are used in the micro-scale brain tissue to study the effective behavior of this tissue under injury-based loadings. The research involves the development of a tool providing a better understanding of the mechanical behavior of the brain tissue against blast loads and a rational multi-scale approach for driving injury criteria.


Sign in / Sign up

Export Citation Format

Share Document