bicycle helmets
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 25)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Ann R Harlos ◽  
Steven Rowson

In the United States, all bicycle helmets must comply with the standard created by the Consumer Product Safety Commission (CPSC). In this standard, bike helmets are only required to by tested above an established test line. Unregulated helmet performance below the test line could pose an increased risk of head injury to riders. This study quantified the impact locations of damaged bike helmets from real-world accidents and tested the most commonly impacted locations under CPSC bike helmet testing protocol. Ninety-five real-world impact locations were quantified. The most common impact locations were side-middle (31.6%), rear boss-rim (13.7%), front boss-rim (9.5%), front boss-middle (9.5%), and rear boss-middle (9.5%). The side-middle, rear boss-rim, and front boss (front boss-middle and front boss-rim regions combined) were used for testing. Two of the most commonly impacted regions were below the test line (front boss-rim and rear boss-rim). Twelve purchased helmet models were tested under CPSC protocol at each location for a total of 36 impacts. An ANOVA test showed that impact location had a strong influence on the variance of peak linear acceleration (PLA) ( p = 0.002). A Tukey HSD post hoc test determined that PLA at the side-middle (214.9 ± 20.8 g) and front boss (228.0 ± 39.6 g) locations were significantly higher than the PLA at the rear boss-rim (191.5 ± 24.2 g) location. The highest recorded PLA (318.8 g) was at the front boss-rim region. This was the only test that exceeded the 300 g threshold. This study presented a method for quantifying real-world impact locations of damaged bike helmets. Higher variance in helmet performance was found at the regions on or below the test line than at the region above the test line.


2021 ◽  
Author(s):  
Fatemeh Davoudi Kakhki ◽  
Maria Chierichetti

In California, bike fatalities increased by 8.1% from 2015 to 2016. Even though the benefits of wearing helmets in protecting cyclists against trauma in cycling crash has been determined, the use of helmets is still limited, and there is opposition against mandatory helmet use, particularly for adults. Therefore, exploring perceptions of adult cyclists regarding mandatory helmet use is a key element in understanding cyclists’ behavior, and determining the impact of mandatory helmet use on their cycling rate. The goal of this research is to identify sociodemographic characteristics and cycling behaviors that are associated with the use and non-use of bicycle helmets among adults, and to assess if the enforcement of a bicycle helmet law will result in a change in cycling rates. This research develops hybrid machine learning models to pinpoint the driving factors that explain adult cyclists’ behavior regarding helmet use laws.


Author(s):  
Javid Abderezaei ◽  
Fargol Rezayaraghi ◽  
Brigit Kain ◽  
Andrea Menichetti ◽  
Mehmet Kurt

Cycling accidents are the leading cause of sports-related head injuries in the US. Conventional bicycle helmets typically consist of polycarbonate shell over Expanded Polystyrene (EPS) foam and are tested with drop tests to evaluate a helmet’s ability to reduce head kinematics. Within the last decade, novel helmet technologies have been proposed to mitigate brain injuries during bicycle accidents, which necessitates the evaluation of their effectiveness in impact testing as compared to conventional helmets. In this paper, we reviewed the literature to collect and analyze the kinematic data of drop test experiments carried out on helmets with different technologies. In order to provide a fair comparison across different types of tests, we clustered the datasets with respect to their normal impact velocities, impact angular momentum, and the type of neck apparatus. When we analyzed the data based on impact velocity and angular momentum clusters, we found that the bicycle helmets that used rotation damping based technology, namely MIPS, had significantly lower peak rotational acceleration (PRA) and Generalized Acceleration Model for Brain Injury Threshold (GAMBIT) as compared to the conventional EPS liner helmets (p < 0.01). SPIN helmets had a superior performance in PRA compared to conventional helmets (p < 0.05) in the impact angular momentum clustered group, but not in the impact-velocity clustered comparisons. We also analyzed other recently developed helmets that primarily use collapsible structures in their liners, such as WaveCel and Koroyd. In both of the impact velocity and angular momentum groups, helmets based on the WaveCel technology had significantly lower peak linear acceleration (PLA), PRA, and GAMBIT at low impact velocities as compared to the conventional helmets, respectively (p < 0.05). The protective gear with the airbag technology, namely Hövding, also performed significantly better compared to the conventional helmets in the analyzed kinematic-based injury metrics (p < 0.001), possibly due to its advantage in helmet size and stiffness. We also observed that the differences in the kinematic datasets strongly depend on the type of neck apparatus. Our findings highlight the importance and benefits of developing new technologies and impact testing standards for bicycle helmet designs for better prevention of traumatic brain injury (TBI).


Author(s):  
Fady Abayazid ◽  
Ke Ding ◽  
Karl Zimmerman ◽  
Helena Stigson ◽  
Mazdak Ghajari

AbstractNew helmet technologies have been developed to improve the mitigation of traumatic brain injury (TBI) in bicycle accidents. However, their effectiveness under oblique impacts, which produce more strains in the brain in comparison with vertical impacts adopted by helmet standards, is still unclear. Here we used a new method to assess the brain injury prevention effects of 27 bicycle helmets in oblique impacts, including helmets fitted with a friction-reducing layer (MIPS), a shearing pad (SPIN), a wavy cellular liner (WaveCel), an airbag helmet (Hövding) and a number of conventional helmets. We tested whether helmets fitted with the new technologies can provide better brain protection than conventional helmets. Each helmeted headform was dropped onto a 45° inclined anvil at 6.3 m/s at three locations, with each impact location producing a dominant head rotation about one anatomical axes of the head. A detailed computational model of TBI was used to determine strain distribution across the brain and in key anatomical regions, the corpus callosum and sulci. Our results show that, in comparison with conventional helmets, the majority of helmets incorporating new technologies significantly reduced peak rotational acceleration and velocity and maximal strain in corpus callosum and sulci. Only one helmet with MIPS significantly increased strain in the corpus collosum. The helmets fitted with MIPS and WaveCel were more effective in reducing strain in impacts producing sagittal rotations and a helmet fitted with SPIN in coronal rotations. The airbag helmet was effective in reducing brain strain in all impacts, however, peak rotational velocity and brain strain heavily depended on the analysis time. These results suggest that incorporating different impact locations in future oblique impact test methods and designing helmet technologies for the mitigation of head rotation in different planes are key to reducing brain injuries in bicycle accidents.


Author(s):  
Madelen Fahlstedt ◽  
Fady Abayazid ◽  
Matthew B. Panzer ◽  
Antonia Trotta ◽  
Wei Zhao ◽  
...  

AbstractBicycle helmets are shown to offer protection against head injuries. Rating methods and test standards are used to evaluate different helmet designs and safety performance. Both strain-based injury criteria obtained from finite element brain injury models and metrics derived from global kinematic responses can be used to evaluate helmet safety performance. Little is known about how different injury models or injury metrics would rank and rate different helmets. The objective of this study was to determine how eight brain models and eight metrics based on global kinematics rank and rate a large number of bicycle helmets (n=17) subjected to oblique impacts. The results showed that the ranking and rating are influenced by the choice of model and metric. Kendall’s tau varied between 0.50 and 0.95 when the ranking was based on maximum principal strain from brain models. One specific helmet was rated as 2-star when using one brain model but as 4-star by another model. This could cause confusion for consumers rather than inform them of the relative safety performance of a helmet. Therefore, we suggest that the biomechanics community should create a norm or recommendation for future ranking and rating methods.


2020 ◽  
pp. 1-6
Author(s):  
Dimitris Zouzias ◽  
Guido De Bruyne ◽  
Aisling Ni Annaidh ◽  
Antonia Trotta ◽  
Jan Ivens

2020 ◽  
Vol 1 (1) ◽  
pp. 201-206
Author(s):  
Crispijn L. van den Brand ◽  
Lennard B. Karger ◽  
Susanne T.M. Nijman ◽  
Huib Valkenberg ◽  
Korné Jellema

Sign in / Sign up

Export Citation Format

Share Document