New insight into the role of inclusions in hydrogen-induced degradation of fracture toughness: three-dimensional imaging and modeling

Author(s):  
K.M.M. Rahman ◽  
W. Qin ◽  
J.A. Szpunar ◽  
J. Kozinski ◽  
M. Song ◽  
...  
1996 ◽  
Vol 34 (1) ◽  
pp. 27
Author(s):  
Sue Yon Shim ◽  
Ki Joon Sung ◽  
Young Ju Kim ◽  
In Soo Hong ◽  
Myung Soon Kim ◽  
...  

1991 ◽  
Vol 115 (5) ◽  
pp. 1267-1274 ◽  
Author(s):  
S Eliott ◽  
P H Vardy ◽  
K L Williams

While the role of myosin II in muscle contraction has been well characterized, less is known about the role of myosin II in non-muscle cells. Recent molecular genetic experiments on Dictyostelium discoideum show that myosin II is necessary for cytokinesis and multicellular development. Here we use immunofluorescence microscopy with monoclonal and polyclonal antimyosin antibodies to visualize myosin II in cells of the multicellular D. discoideum slug. A subpopulation of peripheral and anterior cells label brightly with antimyosin II antibodies, and many of these cells display a polarized intracellular distribution of myosin II. Other cells in the slug label less brightly and their cytoplasm displays a more homogeneous distribution of myosin II. These results provide insight into cell motility within a three-dimensional tissue and they are discussed in relation to the possible roles of myosin II in multicellular development.


2018 ◽  
Vol 19 (11) ◽  
pp. 3401 ◽  
Author(s):  
Ashutosh Srivastava ◽  
Tetsuro Nagai ◽  
Arpita Srivastava ◽  
Osamu Miyashita ◽  
Florence Tama

Protein structural biology came a long way since the determination of the first three-dimensional structure of myoglobin about six decades ago. Across this period, X-ray crystallography was the most important experimental method for gaining atomic-resolution insight into protein structures. However, as the role of dynamics gained importance in the function of proteins, the limitations of X-ray crystallography in not being able to capture dynamics came to the forefront. Computational methods proved to be immensely successful in understanding protein dynamics in solution, and they continue to improve in terms of both the scale and the types of systems that can be studied. In this review, we briefly discuss the limitations of X-ray crystallography in studying protein dynamics, and then provide an overview of different computational methods that are instrumental in understanding the dynamics of proteins and biomacromolecular complexes.


2011 ◽  
pp. n/a-n/a
Author(s):  
R. F. Miguelote ◽  
B. Vides ◽  
R. F. Santos ◽  
J. A. Palha ◽  
A. Matias ◽  
...  

2021 ◽  
Vol 118 (10) ◽  
pp. e2019220118
Author(s):  
Benjamin Pluvinage ◽  
Elizabeth Ficko-Blean ◽  
Ilit Noach ◽  
Christopher Stuart ◽  
Nicole Thompson ◽  
...  

A challenge faced by peptidases is the recognition of highly diverse substrates. A feature of some peptidase families is the capacity to specifically use post-translationally added glycans present on their protein substrates as a recognition determinant. This is ultimately critical to enabling peptide bond hydrolysis. This class of enzyme is also frequently large and architecturally sophisticated. However, the molecular details underpinning glycan recognition by these O-glycopeptidases, the importance of these interactions, and the functional roles of their ancillary domains remain unclear. Here, using the Clostridium perfringens ZmpA, ZmpB, and ZmpC M60 peptidases as model proteins, we provide structural and functional insight into how these intricate proteins recognize glycans as part of catalytic and noncatalytic substrate recognition. Structural, kinetic, and mutagenic analyses support the key role of glycan recognition within the M60 domain catalytic site, though they point to ZmpA as an apparently inactive enzyme. Wider examination of the Zmp domain content reveals noncatalytic carbohydrate binding as a feature of these proteins. The complete three-dimensional structure of ZmpB provides rare insight into the overall molecular organization of a highly multimodular enzyme and reveals how the interplay of individual domain function may influence biological activity. O-glycopeptidases frequently occur in host-adapted microbes that inhabit or attack mucus layers. Therefore, we anticipate that these results will be fundamental to informing more detailed models of how the glycoproteins that are abundant in mucus are destroyed as part of pathogenic processes or liberated as energy sources during normal commensal lifestyles.


1985 ◽  
Vol 52 (2) ◽  
pp. 287-290 ◽  
Author(s):  
L. M. Brock ◽  
M. Jolles ◽  
M. Schroedl

Dynamic fracture is often studied by means of the dynamic tear (DT) test, which involves transverse impact by a mass on a beam. This process generates a complicated elastic wave pattern in the beam which, however, consists of two wave types: impact waves and reflected waves. The former are the compression wave radiating from the impact line and its diffractions at the notch end, while the latter are all waves originated by reflections from the beam surfaces. To gain insight into the role of specific waveforms in generating the fracture at the notch end in this process, the effects of the impact waves on the dynamic notch end stress field is studied. For both an idealized and an experimentally determined impact force, these waves are shown to initially place the notch end in compression. Moreover, even when a tensile stress state is eventually achieved, the stress intensity factor levels lie well below experimentally determined fracture toughness values. These results suggest that reflected waves generate the fracture, which agrees with experimental evidence.


1982 ◽  
Vol 243 (6) ◽  
pp. E427-E442 ◽  
Author(s):  
R. B. Page

The direction of pituitary blood flow, the amount of pituitary blood flow, its regional control, and the role of the median eminence microcirculation are the subjects of this review. Present concepts of pituitary blood flow are focused almost entirely on its direction and arouse from studies of pituitary vascular anatomy performed almost 50 years ago. The development of new anatomic techniques has led to a reappraisal of pituitary angioarchitecture, stimulated physiological studies to clarify the pattern of blood flow within the entire gland, and led to a reappraisal of accepted concepts of directional pituitary blood flow. The availability of techniques to accurately measure organ blood flow has permitted study of pituitary blood flow; and, when combined with knowledge of pituitary anatomy, the application of these techniques promises to provide a means to develop insight into control of the mechanisms by which chemical messengers are delivered to the pituitary to control its function. New anatomic techniques promise to develop new understanding of the three-dimensional arrangement of median eminence microvasculature and yield new concepts of blood flow regulation within the median eminence that can be tested by physiological means.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Gethin R. Owen ◽  
David L. Stokes

Desmosomes are a complex assembly of protein molecules that mediate adhesion between adjacent cells. Desmosome composition is well established and spatial relationships between components have been identified. Intercellular cell-cell adhesion is created by the interaction of extracellular domains of desmosomal cadherins, namely, desmocollins and desmogleins. High-resolution methods have provided insight into the structural interactions between cadherins. However, there is a lack of understanding about the architecture of the intact desmosomes and the physical principles behind their adhesive strength are unclear. Electron Tomography (ET) studies have offered three-dimensional visual data of desmosomal cadherin associations at molecular resolution. This review discusses the merits of two cadherin association models represented using ET. We discuss the possible role of sample preparation on the structural differences seen between models and the possibility of adaptive changes in the structure as a direct consequence of mechanical stress and stratification.


Sign in / Sign up

Export Citation Format

Share Document