Twist boundaries and rotational slip in ZnS

1968 ◽  
Vol 18 (154) ◽  
pp. 753-762 ◽  
Author(s):  
B. K. Daniels
Author(s):  
C. B. Carter ◽  
J. Rose ◽  
D. G. Ast

The hot-pressing technique which has been successfully used to manufacture twist boundaries in silicon has now been used to form tilt boundaries in this material. In the present study, weak-beam imaging, lattice-fringe imaging and electron diffraction techniques have been combined to identify different features of the interface structure. The weak-beam technique gives an overall picture of the geometry of the boundary and in particular allows steps in the plane of the boundary which are normal to the dislocation lines to be identified. It also allows pockets of amorphous SiO2 remaining in the interface to be recognized. The lattice-fringe imaging technique allows the boundary plane parallel to the dislocation to be identified. Finally the electron diffraction technique allows the periodic structure of the boundary to be evaluated over a large area - this is particularly valuable when the dislocations are closely spaced - and can also provide information on the structural width of the interface.


Author(s):  
J. R. Michael ◽  
C. H. Lin ◽  
S. L. Sass

The segregation of solute atoms to grain boundaries in polycrystalline solids can be responsible for embrittlement of the grain boundaries. Although Auger electron spectroscopy (AES) and analytical electron microscopy (AEM) have verified the occurrence of solute segregation to grain boundaries, there has been little experimental evidence concerning the distribution of the solute within the plane of the interface. Sickafus and Sass showed that Au segregation causes a change in the primary dislocation structure of small angle [001] twist boundaries in Fe. The bicrystal specimens used in their work, which contain periodic arrays of dislocations to which Au is segregated, provide an excellent opportunity to study the distribution of Au within the boundary by AEM.The thin film Fe-0.8 at% Au bicrystals (composition determined by Rutherford backscattering spectroscopy), ∼60 nm thick, containing [001] twist boundaries were prepared as described previously. The bicrystals were analyzed in a Vacuum Generators HB-501 AEM with a field emission electron source and a Link Analytical windowless x-ray detector.


Author(s):  
William Krakow ◽  
David A. Smith

Recent developments in specimen preparation, imaging and image analysis together permit the experimental determination of the atomic structure of certain, simple grain boundaries in metals such as gold. Single crystal, ∼125Å thick, (110) oriented gold films are vapor deposited onto ∼3000Å of epitaxial silver on (110) oriented cut and polished rock salt substrates. Bicrystal gold films are then made by first removing the silver coated substrate and placing in contact two suitably misoriented pieces of the gold film on a gold grid. Controlled heating in a hot stage first produces twist boundaries which then migrate, so reducing the grain boundary area, to give mixed boundaries and finally tilt boundaries perpendicular to the foil. These specimens are well suited to investigation by high resolution transmission electron microscopy.


2014 ◽  
Vol 118 (11) ◽  
pp. 5796-5801 ◽  
Author(s):  
Yiqian Wang ◽  
Chao Wang ◽  
Lu Yuan ◽  
Rongsheng Cai ◽  
Xuehua Liu ◽  
...  

1968 ◽  
Vol 18 (151) ◽  
pp. 61-71 ◽  
Author(s):  
C. A. May ◽  
K. H. G. Ashbee
Keyword(s):  

1988 ◽  
Vol 58 (1) ◽  
pp. 11-15 ◽  
Author(s):  
T. Mori ◽  
H. Miura ◽  
T. Tokita ◽  
J. Haji ◽  
M. Kato
Keyword(s):  

1995 ◽  
Vol 10 (4) ◽  
pp. 803-809 ◽  
Author(s):  
W. Ito ◽  
A. Oishi ◽  
S. Mahajan ◽  
Y. Yoshida ◽  
T. Morishita

Microstructures of a-axis oriented YBa2Cu3O7−x films made by newly developed de 100 MHz hybrid plasma sputtering were investigated using transmission electron microscopy (TEM). The films deposited on (110) NdGaO3 and (100) SrTiO3 substrates were found to grow in a perfect epitaxial fashion and with clear interface. The plan view of the TEM image showed that both films were comprised of two kinds of grains having the c axis aligning along two perpendicular directions in the plane with equal probability. The structures of the grain boundary, however, were found to be very different for the two films from the plan views. The film on NdGaO3 showed a lot of twist boundaries, while the film on SrTiO3 consisted of many symmetrical tilt boundaries and basal-plane-faced tilt boundaries. The type of grain boundary is determined by the anisotropic growth rates of the film between c direction and a-b direction.


1986 ◽  
Vol 136 (1) ◽  
pp. 31-36 ◽  
Author(s):  
M. Kohyama ◽  
R. Yamamoto ◽  
M. Doyama
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document