scholarly journals Heavy Metal Tolerance and Accumulation in Indian Mustard (Brassica JunceaL.) Expressing Bacterial γ-Glutamylcysteine Synthetase or Glutathione Synthetase

2008 ◽  
Vol 10 (5) ◽  
pp. 440-454 ◽  
Author(s):  
Sarah Reisinger ◽  
Michela Schiavon ◽  
Norman Terry ◽  
Elizabeth A.H. Pilon-Smits
HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1080E-1081
Author(s):  
Ksenija Gasic ◽  
Schuyler S. Korban

Phytochelatins (PCs) are heavy metal binding peptides that play important roles in sequestration and detoxification of heavy metals in plants. To develop transgenic plants with increased tolerance and/or accumulation of heavy metals from soil, an Arabidopsis thaliana FLAG–tagged AtPCS1 cDNA encoding phytochelatin synthase (PCS) under the control of a 35S promoter was expressed in Indian mustard (Brassica juncea). Four transgenic Indian mustard lines, designated pc lines, with different levels of AtPCS1 mRNA accumulation and correspondent AtPCS1 protein levels were selected and analyzed for tolerance to cadmium (Cd) and zinc (Zn). Heavy metal tolerance was assessed by measuring root length of 10-day-old seedlings grown on agar medium supplemented with different concentrations of Cd (0, 100, 150, and 200 μm CdCl2) and Zn (200, 400, 600, and 800 μm ZnCl2). All transgenic lines showed significantly longer roots when grown on a medium supplemented with 100 μm CdCl2. No significant differences were observed between transgenic lines and wild type when plants were grown on higher levels of Cd. This indicated that only partial tolerance to Cd was observed in these transgenic lines. Similarly, partial tolerance for Zn was also observed in these transgenic lines, but up to levels of 400 μm ZnCl2. Expression levels of AtPCS1 protein were not related to tolerance responses for either Cd or Zn stresses in transgenic lines.


Author(s):  
Kashaf Junaid ◽  
Hasan Ejaz ◽  
Iram Asim ◽  
Sonia Younas ◽  
Humaira Yasmeen ◽  
...  

This study evaluates bacteriological profiles in ready-to-eat (RTE) foods and assesses antibiotic resistance, extended-spectrum β-lactamase (ESBL) production by gram-negative bacteria, and heavy metal tolerance. In total, 436 retail food samples were collected and cultured. The isolates were screened for ESBL production and molecular detection of ESBL-encoding genes. Furthermore, all isolates were evaluated for heavy metal tolerance. From 352 culture-positive samples, 406 g-negative bacteria were identified. Raw food samples were more often contaminated than refined food (84.71% vs. 76.32%). The predominant isolates were Klebsiella pneumoniae (n = 76), Enterobacter cloacae (n = 58), and Escherichia coli (n = 56). Overall, the percentage of ESBL producers was higher in raw food samples, although higher occurrences of ESBL-producing E. coli (p = 0.01) and Pseudomonas aeruginosa (p = 0.02) were observed in processed food samples. However, the prevalence of ESBL-producing Citrobacter freundii in raw food samples was high (p = 0.03). Among the isolates, 55% were blaCTX-M, 26% were blaSHV, and 19% were blaTEM. Notably, heavy metal resistance was highly prevalent in ESBL producers. These findings demonstrate that retail food samples are exposed to contaminants including antibiotics and heavy metals, endangering consumers.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 155
Author(s):  
Anastasia Giannakoula ◽  
Ioannis Therios ◽  
Christos Chatzissavvidis

Photosynthetic changes and antioxidant activity to oxidative stress were evaluated in sour orange (Citrus aurantium L.) leaves subjected to lead (Pb), copper (Cu) and also Pb + Cu toxicity treatments, in order to elucidate the mechanisms involved in heavy metal tolerance. The simultaneous effect of Pb− and Cu on growth, concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), chlorophylls, flavonoids, carotenoids, phenolics, chlorophyll fluorescence and photosynthetic parameters were examined in leaves of Citrus aurantium L. plants. Exogenous application of Pb and Cu resulted in an increase in leaf H2O2 and lipid peroxidation (MDA). Toxicity symptoms of both Pb and Cu treated plants were stunted growth and decreased pigments concentration. Furthermore, photosynthetic activity of treated plants exhibited a significant decline. The inhibition of growth in Pb and Cu-treated plants was accompanied by oxidative stress, as indicated by the enhanced lipid peroxidation and the high H2O2 concentration. Furthermore, antioxidants in citrus plants after exposure to high Pb and Cu concentrations were significantly increased compared to control and low Pb and Cu treatments. In conclusion, this study indicates that Pb and Cu promote lipid peroxidation, disrupt membrane integrity, reduces growth and photosynthesis and inhibit mineral nutrition. Considering the potential for adverse human health effects associated with high concentrations of Pb and Cu contained in edible parts of citrus plants the study signals that it is important to conduct further research into the accessibility and uptake of the tested heavy metals in the soil and whether they pose risks to humans.


BioMetals ◽  
2012 ◽  
Vol 25 (3) ◽  
pp. 489-505 ◽  
Author(s):  
Ganesh Thapa ◽  
Ayan Sadhukhan ◽  
Sanjib Kumar Panda ◽  
Lingaraj Sahoo

2013 ◽  
Vol 7 (2) ◽  
pp. 130-136 ◽  
Author(s):  
Tewari Suman ◽  
W Ramteke Pramod ◽  
Tripathi Manikant ◽  
Kumar Shailendra ◽  
Kumar Garg Satyendra

Author(s):  
Nasser Delangiz ◽  
Bahman Khoshru ◽  
Behnam Asgari Lajayer ◽  
Mansour Ghorbanpour ◽  
Solmaz Kazemalilou

Sign in / Sign up

Export Citation Format

Share Document