Nonlinear dynamic buckling of functionally graded porous beams

Author(s):  
Kang Gao ◽  
Qian Huang ◽  
Sritawat Kitipornchai ◽  
Jie Yang
Author(s):  
Ahmed Y Ali ◽  
Hamad M Hasan

This study investigates the nonlinear dynamic buckling of the exponentially functionally graded orthotropic toroidal shell segments under constant loading rates under the shear deformation theory with the damping influence. The properties of the shell material are assumed to be graded according to the exponential distribution function through the shell thickness direction. The shear deformation theory with von Karman nonlinearity, Stein and McElman assumption, initial imperfection, and damping effect are adopted to create the theoretical formulations. Nonlinear dynamic stability equation is solved using Galerkin's procedure and the fourth-order Runge–Kutta technique. The dynamic buckling loads are evaluated by using Budiansky–Roth criterion. Moreover, different parameter influences such as geometrical parameters, velocity, imperfections, damping ratios, and nonhomogeneous parameters on the dynamic buckling are examined in detail. The obtained results are validated with the previous publications and the good agreements are shown.


2014 ◽  
Vol 36 (4) ◽  
pp. 255-265 ◽  
Author(s):  
Dao Van Dung ◽  
Vu Hoai Nam

Based on the classical thin shell theory with the geometrical nonlinearity in von Karman-Donnell sense, the smeared stiffener technique, Galerkin method and an approximate three-term solution of deflection taking into account the nonlinear buckling shape is chosen, the governing nonlinear dynamic equations of eccentrically stiffened functionally graded circular cylindrical shells subjected to time dependent axial compression and external pressure is established in part 1. In this study, the nonlinear dynamic responses are obtained by fourth order Runge-Kutta method and the nonlinear dynamic buckling behavior of stiffened functionally graded shells under linear-time loading is determined by according to Budiansky-Roth criterion. Numerical results are investigated to reveal effects of stiffener, input factors on the vibration and nonlinear dynamic buckling loads of stiffened functionally graded circular cylindrical shells.


Author(s):  
Doan Xuan Le ◽  
Phu Van Khuc

This paper is presented to solve the nonlinear dynamic buckling of sandwich functionally graded circular cylinder shells filled with fluid. Governing equations are derived using the classical shell theory and the geometrical nonlinearity in von Karman-Donnell sense is taken into account. Solutions of the problem are established by using Galerkin’s method and Rung-Kutta method. Effects of thermal environment, parameters of geometric, volume fraction index k and fluid on dynamic responses of shells are investigated.


2021 ◽  
Vol 169 ◽  
pp. 108317
Author(s):  
Qingya Li ◽  
Yuhang Tian ◽  
Di Wu ◽  
Wei Gao ◽  
Yuguo Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document