Micromechanical damage modeling of glass fiber-reinforced thermoplastic composites using homogenized volume elements

Author(s):  
Khodijah Kholish Rumayshah ◽  
Hermawan Judawisastra ◽  
Satrio Wicaksono ◽  
Tatacipta Dirgantara
2020 ◽  
Vol 254 ◽  
pp. 112850
Author(s):  
Yucheng Zhong ◽  
Ping Liu ◽  
Qingxiang Pei ◽  
Viacheslav Sorkin ◽  
Athanasius Louis Commillus ◽  
...  

2013 ◽  
Author(s):  
Christian Brecher ◽  
Michael Emonts ◽  
Richard Ludwig Schares ◽  
Joffrey Stimpfl

2020 ◽  
Vol 54 (27) ◽  
pp. 4231-4239
Author(s):  
Vishal Gavande ◽  
Anoop Anand

Continuous glass fiber reinforced thermoplastic composites have been manufactured and their mechanical properties have been evaluated. A catalyzed monomer is infused through a stack of compacted dry reinforcement under vacuum. The monomer undergoes radical polymerization with a peroxide catalyst. Viscosity and reactivity profile have been characterized to determine the catalyst concentration and temperature of infusion. Glass fiber reinforced thermoplastic composites realized through this method have mechanical properties that are comparable with that of epoxy with an added advantage of excellent toughness and repairability. For example, the residual compressive strength of thermoplastic composites after low-velocity impact is found to be over 140% more than that of epoxy-based composites using the same reinforcement and realized under identical manufacturing methods.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 463 ◽  
Author(s):  
Ke Chen ◽  
Mingyin Jia ◽  
Hua Sun ◽  
Ping Xue

In this paper, glass fiber-reinforced polyamide-6 (PA-6) composites with up to 70 wt% fiber contents were successfully manufactured using a pultrusion process, utilizing the anionic polymerization of caprolactam (a monomer of PA-6). A novel thermoplastic reaction injection pultrusion test line was developed with a specifically designed injection chamber to achieve complete impregnation of fiber bundles and high speed pultrusion. Process parameters like temperature of injection chamber, temperature of pultrusion die, and pultrusion speed were studied and optimized. The effects of die temperature on the crystallinity, melting point, and mechanical properties of the pultruded composites were also evaluated. The pultruded composites exhibited the highest flexural strength and flexural modulus, reaching 1061 MPa and 38,384 MPa, respectively. Then, effects of fiber contents on the density, heat distortion temperature, and mechanical properties of the composites were analyzed. The scanning electron microscope analysis showed the great interfacial adhesion between fibers and matrix at 180 °C, which greatly improved the mechanical properties of the composites. The thermoplastic reaction injection pultrusion in this paper provided an alternative for the preparation of thermoplastic composites with high fiber content.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2019 ◽  
Author(s):  
Junjia Cui ◽  
Shaoluo Wang ◽  
Shuhao Wang ◽  
Guangyao Li ◽  
Peilin Wang ◽  
...  

Long glass fiber reinforced thermoplastic composites have been increasingly used in automotive parts due to their excellent mechanical properties and recyclability. However, the effects of strain rates on the mechanical properties and failure mechanisms of long glass fiber reinforced polypropylene composites (LGFRPPs) have not been studied systematically. In this study, the effects of strain rates (from 0.001 s−1 to 400 s−1) on the mechanical properties and failure mechanism of LGFRPPs were investigated. The results showed that ultimate strength and fracture strain of the LGFRPPs increased obviously, whereas the stiffness remained essentially unchanged with the strain rates from low to high. The micro-failure modes mainly consisted of fibers pulled out, fiber breakage, interfacial debonding, matrix cracking, and ductile to brittle (ductile pulling of fibrils/micro-fibrils) fracture behavior of the matrix. As the strain rates increased, the interfacial bonding properties of LGFRPPs increased, resulting in a gradual increase of fiber breakage at the fracture surface of the specimen and the gradual decrease of pull-out. In this process, more failure energy was absorbed, thus, the ultimate strength and fracture strain of LGFRPPs were improved.


2015 ◽  
Vol 727-728 ◽  
pp. 262-265
Author(s):  
Lu Zhang ◽  
Zhen Qing Wang ◽  
Ji Feng Zhang ◽  
Li Min Zhou

A fatal disadvantage of continuously reinforced thermoplastic composites is the high melt viscosity of the matrix which hampers impregnation. However, the melt viscosity of low molecular weight cyclic butylene terephthalate resin can reach extremely low value, which simplifies impregnation and even allows for the use of thermoset production techniques resin transfer moulding. To solve the problem of the glass fiber reinforced poly cyclic butylene terephthalate composites applied in the environment of high temperature, the specimens of composite laminates were tested under and after different temperature. It has been observed that the tensile properties of GF/PCBT composites decrease with increasing temperature between room 25°C and 150°C and tend towards stability after the high temperature.


Sign in / Sign up

Export Citation Format

Share Document