Genotoxic and mutagenic effects of passive smoking and urban air pollutants in buccal mucosa cells of children enrolled in public school

2017 ◽  
Vol 27 (5) ◽  
pp. 346-351 ◽  
Author(s):  
Deborah Navit de Carvalho Cavalcante ◽  
Juliana Caroline Vivian Sposito ◽  
Bruno do Amaral Crispim ◽  
André Vieira do Nascimento ◽  
Alexeia Barufatti Grisolia
PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e96524 ◽  
Author(s):  
Elisabetta Ceretti ◽  
Donatella Feretti ◽  
Gaia C V. Viola ◽  
Ilaria Zerbini ◽  
Rosa M. Limina ◽  
...  

2013 ◽  
Vol 23 (suppl_1) ◽  
Author(s):  
E Ceretti ◽  
I Zerbini ◽  
GCV Viola ◽  
C Zani ◽  
RM Limina ◽  
...  

Epidemiology ◽  
2011 ◽  
Vol 22 ◽  
pp. S140-S141
Author(s):  
Denis Sarigiannis ◽  
Alberto Gotti ◽  
Pavlos Kalabokas ◽  
Fausto Manes ◽  
Guido Incerti ◽  
...  

1993 ◽  
Vol 101 (suppl 3) ◽  
pp. 89-95 ◽  
Author(s):  
R. Barale ◽  
I. Barrai ◽  
I. Sbrana ◽  
L. Migliore ◽  
A. Marrazzini ◽  
...  

Author(s):  
Laura Goulier ◽  
Bastian Paas ◽  
Laura Ehrnsperger ◽  
Otto Klemm

Since operating urban air quality stations is not only time consuming but also costly, and because air pollutants can cause serious health problems, this paper presents the hourly prediction of ten air pollutant concentrations (CO2, NH3, NO, NO2, NOx, O3, PM1, PM2.5, PM10 and PN10) in a street canyon in Münster using an artificial neural network (ANN) approach. Special attention was paid to comparing three predictor options representing the traffic volume: we included acoustic sound measurements (sound), the total number of vehicles (traffic), and the hour of the day and the day of the week (time) as input variables and then compared their prediction powers. The models were trained, validated and tested to evaluate their performance. Results showed that the predictions of the gaseous air pollutants NO, NO2, NOx, and O3 reveal very good agreement with observations, whereas predictions for particle concentrations and NH3 were less successful, indicating that these models can be improved. All three input variable options (sound, traffic and time) proved to be suitable and showed distinct strengths for modelling various air pollutant concentrations.


2020 ◽  
Author(s):  
Shibao Wang ◽  
Yun Ma ◽  
Zhongrui Wang ◽  
Lei Wang ◽  
Xuguang Chi ◽  
...  

Abstract. The development of low-cost sensors and novel calibration algorithms provides new hints to complement conventional ground-based observation sites to evaluate the spatial and temporal distribution of pollutants on hyper-local scales (tens of meters). Here we use sensors deployed on a taxi fleet to explore the air quality in the road network of Nanjing over the course of a year (Oct. 2019–Sep. 2020). Based on GIS technology, we develop a grid analysis method to obtain 50 m resolution maps of major air pollutants (CO, NO2, and O3). Through hotspots identification analysis, we find three main sources of air pollutants including traffic, industrial emissions, and cooking fumes. We find that CO and NO2 concentrations show a pattern: highways > arterial roads > secondary roads > branch roads > residential streets, reflecting traffic volume. While the O3 concentrations in these five road types are in opposite order due to the titration effect of NOx. Combined the mobile measurements and the stationary station data, we diagnose that the contribution of traffic-related emissions to CO and NO2 are 42.6 % and 26.3 %, respectively. Compared to the pre-COVID period, the concentrations of CO and NO2 during COVID-lockdown period decreased for 44.9 % and 47.1 %, respectively, and the contribution of traffic-related emissions to them both decreased by more than 50 %. With the end of the COVID-lockdown period, traffic emissions and air pollutant concentrations rebounded substantially, indicating that traffic emissions have a crucial impact on the variation of air pollutants levels in urban regions. This research demonstrates the sense power of mobile monitoring for urban air pollution, which provides detailed information for source attribution, accurate traceability, and potential mitigation strategies at urban micro-scale.


2021 ◽  
Vol 2139 (1) ◽  
pp. 012002
Author(s):  
L A Manco-Perdomo ◽  
L A Pérez-Padilla ◽  
C A Zafra-Mejía

Abstract The objective of this paper is to show an intervention analysis with autoregressive integrated moving average models for time series of air pollutants in a Latin American megacity. The interventions considered in this study correspond to public regulations for the control of urban air quality. The study period comprised 10 years. Information from 10 monitoring stations distributed throughout the megacity was used. Modelling showed that setting maximum emission limits for different pollution sources and improving fuel were the most appropriate regulatory interventions to reduce air pollutant concentrations. Modelling results also suggested that these interventions began to be effective between the first 4 days-15 days after their publication. The models developed on a monthly timescale had a short autoregressive memory. The air pollutant concentrations at a given time were influenced by the concentrations of up to three months immediately preceding. Moving average term of the models showed fluctuations in time of the air pollutant concentrations (3 months - 14 months). Within the framework of the applications of physics for the air pollution control, this study is relevant for the following findings: the usefulness of autoregressive integrated moving average models to temporal simulate air pollutants, and for its suitable performance to detect and quantify regulatory interventions.


2021 ◽  
Author(s):  
Adrian Wenzel ◽  
Jia Chen ◽  
Florian Dietrich ◽  
Sebastian T. Thekkekara ◽  
Daniel Zollitsch ◽  
...  

<p>Modeling urban air pollutants is a challenging task not only due to the complicated, small-scale topography but also due to the complex chemical processes within the chemical regime of a city. Nitrogen oxides (NOx), particulate matter (PM) and other tracer gases, e.g. formaldehyde, hold information about which chemical regime is present in a city. As we are going to test and apply chemical models for urban pollution – especially with respect to spatial and temporally variability – measurement data with high spatial and temporal resolution are critical.</p><p>Since governmental monitoring stations of air pollutants such as PM, NOx, ozone (O<sub>3</sub>) or carbon monoxide (CO) are large and costly, they are usually only sparsely distributed throughout a city. Hence, the official monitoring sites are not sufficient to investigate whether small-scale variability and its integrated effects are captured well by models. Smart networks consisting of small low-cost air pollutant sensors have the ability to provide the required grid density and are therefore the tool of choice when it comes to setting up or validating urban modeling frameworks. Such sensor networks have been established and run by several groups, achieving spatial and temporal high-resolution concentration maps [1, 2].</p><p>After having conducted a measurement campaign in 2016 to create a high-resolution NO<sub>2</sub> concentration map for Munich [3], we are currently setting up a low-cost sensor network to measure NOx, PM, O<sub>3</sub> and CO concentrations as well as meteorological parameters [4]. The sensors are stand-alone, so that they do not demand mains supply, which gives us a high flexibility in their deployment. Validating air quality models not only requires dense but also high-accuracy measurements. Therefore, we will calibrate our sensor nodes on a weekly basis using a mobile reference instrument and apply the gathered sensor data to a Machine Learning model of the sensor nodes. This will help minimize the often occurring drawbacks of low-cost sensors such as sensor drift, environmental influences and sensor cross sensitivities.</p><p> </p><p>[1] Bigi, A., Mueller, M., Grange, S. K., Ghermandi, G., and Hueglin, C.: Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application, Atmos. Meas. Tech., 11, 3717–3735, https://doi.org/10.5194/amt-11-3717-2018, 2018</p><p>[2] Kim, J., Shusterman, A. A., Lieschke, K. J., Newman, C., and Cohen, R. C.: The BErkeley Atmospheric CO2 Observation Network: field calibration and evaluation of low-cost air quality sensors, Atmos. Meas. Tech., 11, 1937–1946, https://doi.org/10.5194/amt-11-1937-2018, 2018</p><p>[3] Zhu, Y., Chen, J., Bi, X., Kuhlmann, G., Chan, K. L., Dietrich, F., Brunner, D., Ye, S., and Wenig, M.: Spatial and temporal representativeness of point measurements for nitrogen dioxide pollution levels in cities, Atmos. Chem. Phys., 20, 13241–13251, https://doi.org/10.5194/acp-20-13241-2020, 2020</p><p>[4] Zollitsch, D., Chen, J., Dietrich, F., Voggenreiter, B., Setili, L., and Wenig, M.: Low-Cost Air Quality Sensor Network in Munich, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19276, https://doi.org/10.5194/egusphere-egu2020-19276, 2020</p>


Astrocyte ◽  
2015 ◽  
Vol 1 (4) ◽  
pp. 288
Author(s):  
Nilima Sawke ◽  
Gopalkrishna Sawke ◽  
D Parmar

Sign in / Sign up

Export Citation Format

Share Document