Mechanical properties, morphology, Mullins effect and its reversibility of thermoplastic vulcanizates based on ethylene-acrylic acid copolymer/chloroprene rubber blends

2019 ◽  
Vol 17 (4) ◽  
pp. 400-409 ◽  
Author(s):  
Feifei Liu ◽  
Kerui Liao ◽  
Zhaobo Wang
2020 ◽  
pp. 089270572093913
Author(s):  
Feifei Liu ◽  
Xiu Shan ◽  
Zhaobo Wang

Nonisothermal crystallization kinetics of ethylene–acrylic acid copolymer (EAA) and thermoplastic vulcanizate (TPV) based on EAA/chloroprene rubber (CR) were extensively studied using differential scanning calorimetry. Several methods, including the Avrami, Ozawa, and Mo equations, were carried out to analyze the process of nonisothermal crystallization kinetics of EAA and EAA/CR TPV. The results showed that the Avrami analysis modified by Jeziorny and a method developed by Mo could describe the nonisothermal crystallizations of pure EAA and the EAA/CR TPV very well. However, the Ozawa analysis did not give an adequate description. The crystallization processes of pure EAA and the EAA/CR TPV were accelerated by increasing the cooling rates. Moreover, the initial crystallization temperature and the crystallization termination temperature of EAA/CR TPV were higher than those of pure EAA at the same cooling rate, thus showing the nucleating function of CR in the beginning. While the crystallization half time of EAA/CR TPV was apparently longer than that of pure EAA, meaning that the more CR could cause the steric effect and retard the crystallization process of the TPV during the late stages of crystallizing. Although the CR phase of EAA/CR TPV could provide more nucleation sites, the presence of more CR phase must impose a much more significant confinement effect on the crystal growth of EAA. It was believed that this confinement effect overweighed the nucleation effect, thereby slowing down the overall crystallization rate.


2003 ◽  
Vol 198 (1) ◽  
pp. 173-182 ◽  
Author(s):  
Francesco Paolo La Mantia ◽  
Roberto Scaffaro ◽  
Antonino Valenza ◽  
Augusto Marchetti ◽  
Sara Filippi

2019 ◽  
pp. 089270571986648
Author(s):  
Kerui Liao ◽  
Feifei Liu ◽  
Zhaobo Wang

Thermoplastic vulcanizates (TPVs) based on ethylene-methacrylic acid (EMA) copolymer/nitrile butadiene rubber (NBR) blends were prepared by dynamic vulcanization where the NBR phase was reinforced by zinc dimethacrylate (ZDMA). The effect of ZDMA dosage on the mechanical properties, Mullins effect, and morphology of the TPVs was investigated systematically. Experimental results indicated that the mechanical properties of EMA/NBR TPVs were enhanced remarkably with the incorporation of ZDMA. Morphology study showed that the NBR particles with diameters of about 1–5 μm were dispersed evenly in the etched surface of EMA/NBR/ZDMA TPV. The Mullins effect could be observed in the stress–strain curves of EMA/NBR TPV and EMA/NBR/ZDMA TPV during the uniaxial loading–unloading cycles. Compared with those of EMA/NBR TPV, EMA/NBR/ZDMA TPV had the higher stress, residual deformation, and internal friction loss.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document