Kinematic Redundancy Resolution for Serial-Parallel Manipulators via Local Optimization Including Joint Constraints

2006 ◽  
Vol 34 (2) ◽  
pp. 213-239 ◽  
Author(s):  
S.-H. Cha ◽  
T. A. Lasky ◽  
S. A. Velinsky
Robotica ◽  
2021 ◽  
pp. 1-17
Author(s):  
João Vitor de Carvalho Fontes ◽  
Fernanda Thaís Colombo ◽  
Natássya Barlate Floro da Silva ◽  
Maíra Martins da Silva

Abstract One alternative to overcome the presence of singularities within Parallel Manipulators’ workspace is kinematic redundancy. This design alternative can be realized by adding an extra active joint to a kinematic chain. Due to this addition, the IKM presents an infinite number of solutions requiring a redundancy resolution scheme. Moreover, Parallel Manipulators’ control may require complex strategies due to their coupled and complex dynamic and kinematic relations. In this work, a model-free, a joint space computed torque, and a hybrid joint-task-space computed torque control strategies are experimentally compared for a kinematically redundant parallel manipulator. The latter is a novel strategy that requires the measurement of the end-effector’s pose, which is performed by an eye-to-hand limited frame rate camera. The impact of up to three kinematic redundancy levels is also experimentally evaluated using prepositioning and ongoing positioning redundancy resolution schemes. The data are assessed by evaluating a prescribed trajectory executed using a planar kinematically redundant parallel manipulator. These results indicate that kinematic redundancy can not only be used as an alternative design for reducing the presence of singular regions, as claimed in the literature, but also be used along with model-based control strategies for improving dynamic performance and accuracy of parallel manipulators.


2005 ◽  
Vol 02 (01) ◽  
pp. 105-124 ◽  
Author(s):  
VELJKO POTKONJAK

Handwriting has always been considered an important human task, and accordingly it has attracted the attention of researchers working in biomechanics, physiology, and related fields. There exist a number of studies on this area. This paper considers the human–machine analogy and relates robots with handwriting. The work is two-fold: it improves the knowledge in biomechanics of handwriting, and introduces some new concepts in robot control. The idea is to find the biomechanical principles humans apply when resolving kinematic redundancy, express the principles by means of appropriate mathematical models, and then implement them in robots. This is a step forward in the generation of human-like motion of robots. Two approaches to redundancy resolution are described: (i) "Distributed Positioning" (DP) which is based on a model to represent arm motion in the absence of fatigue, and (ii) the "Robot Fatigue" approach, where robot movements similar to the movements of a human arm under muscle fatigue are generated. Both approaches are applied to a redundant anthropomorphic robot arm performing handwriting. The simulation study includes the issues of legibility and inclination of handwriting. The results demonstrate the suitability and effectiveness of both approaches.


1989 ◽  
Vol 6 (6) ◽  
pp. 769-798 ◽  
Author(s):  
Dragomir N. Nenchev

2006 ◽  
Vol 22 (5) ◽  
pp. 1017-1021 ◽  
Author(s):  
Yong Yi ◽  
J.E. McInroy ◽  
Yixin Chen

2022 ◽  
Vol 167 ◽  
pp. 104531
Author(s):  
Hiparco Lins Vieira ◽  
João Vitor de Carvalho Fontes ◽  
Maíra Martins da Silva

Author(s):  
Maryam Agahi ◽  
Leila Notash

In the work presented, the optimal trajectory planning in wire-actuated parallel manipulators in the presence of an obstacle is investigated. The kinematics and dynamics of a wire-actuated parallel manipulator considering the elasticity and damping effects of wires are described. The redundancy resolution of planar wire-actuated parallel manipulators is investigated at the torque level in order to perform desirable tasks to minimize the effect of impact, while maintaining positive tension in each wire. A local optimization routine is used in the simulation to minimize the tension in the wires while modifying the trajectory of the mobile platform and maintaining positive wire tensions. During collision, the tension in the wires is optimized to reduce the effect of impact, and after collision, the trajectory is modified and the wire tensions are minimized in order to avoid collision for the remainder of the trajectory. The effectiveness of the presented approach is studied through a simulation of an example planar wire-actuated manipulator.


Sign in / Sign up

Export Citation Format

Share Document