Presenting an explicit step-by-step algorithm for lemaitre's ductile damage model with the crack closure effect in tensile-compressive loadings

Author(s):  
Ahmad Reza Shamshiri ◽  
Farhad Haji Aboutalebi ◽  
Mehrdad Poursina
2010 ◽  
Vol 26 (4) ◽  
pp. N23-N27 ◽  
Author(s):  
K. Aluru ◽  
F.-L. Wen ◽  
Y.-L. Shen

ABSTRACTA numerical study is undertaken to simulate failure of solder joint caused by cyclic shear deformation. A progressive ductile damage model is incorporated into the rate-dependent elastic-viscoplastic finite element analysis, resulting in the capability of simulating damage evolution and eventual failure through crack formation. It is demonstrated that quantitative information of fatigue life, as well as the temporal and spatial evolution of fatigue cracks, can be explicitly obtained.


Author(s):  
Masanori Kikuchi ◽  
Yoshitaka Wada ◽  
Maigefeireti Maitireyimu ◽  
Hirotaka Sano

Crack closure effect on interaction of two surface crack growth processes by fatigue is studied. At first, change of C value in Paris’ law along crack front of single surface crack is measured experimentally. It is shown that C value decreases near specimen surface. Crack closure effect is studied numerically for a surface crack by elastic-plastic cyclic analyses. It is found that closure effect appears more strongly near specimen surface than the maximum-depth point. By determining effective stress intensity factor including closure effect, it is shown that change of C value is equal to the change of closure effect along crack front. Using new C value considering closure effect, fatigue crack growth is predicted using S-FEM. It is shown that fatigue life and crack configuration agree well with experimental ones. Finally, interaction of two surface cracks is evaluated numerically, and it is shown that crack closure plays important role on the interaction of two cracks.


Sign in / Sign up

Export Citation Format

Share Document