Prediction of damage evolution behavior in ductile metals by Lemaitre criterion and comparison with GTN and EGTN damage models

Author(s):  
M. S. Sadeghi Nezhad ◽  
F. Haji Aboutalebi
Author(s):  
Zhanwei Yuan ◽  
Yutao Han ◽  
Shunlai Zang ◽  
Jiao Chen ◽  
Guangyu He ◽  
...  

2011 ◽  
Vol 21 (5) ◽  
pp. 713-754 ◽  
Author(s):  
M. S. Niazi ◽  
H. H. Wisselink ◽  
T. Meinders ◽  
J. Huétink

The Lemaitre's continuum damage model is well known in the field of damage mechanics. The anisotropic damage model given by Lemaitre is relatively simple, applicable to nonproportional loads and uses only four damage parameters. The hypothesis of strain equivalence is used to map the effective stress to the nominal stress. Both the isotropic and anisotropic damage models from Lemaitre are implemented in an in-house implicit finite element code. The damage model is coupled with an elasto-plastic material model using anisotropic plasticity (Hill-48 yield criterion) and strain-rate dependent isotropic hardening. The Lemaitre continuum damage model is based on the small strain assumption; therefore, the model is implemented in an incremental co-rotational framework to make it applicable for large strains. The damage dissipation potential was slightly adapted to incorporate a different damage evolution behavior under compression and tension. A tensile test and a low-cycle fatigue test were used to determine the damage parameters. The damage evolution was modified to incorporate strain rate sensitivity by making two of the damage parameters a function of strain rate. The model is applied to predict failure in a cross-die deep drawing process, which is well known for having a wide variety of strains and strain path changes. The failure predictions obtained from the anisotropic damage models are in good agreement with the experimental results, whereas the predictions obtained from the isotropic damage model are slightly conservative. The anisotropic damage model predicts the crack direction more accurately compared to the predictions based on principal stress directions using the isotropic damage model. The set of damage parameters, determined in a uniaxial condition, gives a good failure prediction under other triaxiality conditions.


2020 ◽  
pp. 105678952094856
Author(s):  
A Mattiello ◽  
R Desmorat

The lode angle dependency introduced by anisotropic damage evolution laws is analyzed in detail for initially isotropic materials. Many rupture criteria are obtained, under the proportional loading assumption, by the time integration of different anisotropic damage evolution laws [Formula: see text] among the three existing families: strain governed, stress governed and plastic strain governed. The cross-analysis of path independent rupture criteria and of anisotropic damage evolution laws finally allows us to improve the Lode angle dependency of (fully coupled) anisotropic damage models.


2012 ◽  
Vol 166-169 ◽  
pp. 1883-1886
Author(s):  
You Hong Zhang ◽  
Qian Zhang ◽  
Xin Long Chang ◽  
Chun Guo Yue ◽  
Shi Ying Zhang ◽  
...  

Degradation of mechanical properties of electric explosive device fuse-head was serious in different temperature and humidity environments. The objective of this study was to examine the effects of temperature and humidity aging on the damage evolution behavior of fuse-head used for electric explosive device. In this paper, the experimental studies were presented to appreciate the influence of humidity and temperature on the corrosion damage and firing of electric explosive device. The damage mechanisms and failure modes were determined through nondestructive evaluation. The explosive broken and corrosion damage on lead induced by temperature and humidity aging were the main factors affecting the firing probability. At last, the evolution rule of corrosion damage in the environment of different relative humidity and temperature was discussed.


2007 ◽  
Vol 1043 ◽  
Author(s):  
Steve Valone ◽  
Michael I. Baskes ◽  
Blas P. Uberuaga ◽  
Richard L. Martin ◽  
Alison Kubota ◽  
...  

AbstractModeling cascade and fission damage evolution of actinide materials of all kinds is essential for understanding their aging characteristics. As an example of how exotic some of the damage evolution behavior can be, plutonium-gallium (Pu-Ga) alloys in the δ-phase (fcc lattices) are explored. Aging emanates from the wide variety of spontaneous decay and fission products that, in the case of the Pu, are such species as helium (He) and uranium, among others, as well as interstitials, and vacancies. To aid in our understanding, the modified embedded atom method (MEAM) formalism is applied to the Pu-Ga-He system. The behavior of defects in the fcc (δ) phase of Pu-based materials is strongly influenced by the metastability of this phase. The influence of this metastability on minimum displacement threshold energy, point defect characteristics and He bubbles is delineated. The roles of short-range ordering and transformations of voids into stacking fault tetrahedra in the aging process are also examined.


2017 ◽  
Vol 47 (7) ◽  
pp. 070002
Author(s):  
Hui PENG ◽  
XiaoYang PEI ◽  
Shi CHEN ◽  
MeiLan QI ◽  
JinSong BAI ◽  
...  

2012 ◽  
Vol 22 (2) ◽  
pp. 188-218 ◽  
Author(s):  
J Lian ◽  
M Sharaf ◽  
F Archie ◽  
S Münstermann

The ductile damage mechanisms dominating in modern high-strength steels have emphasised the significance of the onset of damage and the subsequent damage evolution in sheet metal forming processes. This paper contributes to the modelling of the plasticity and ductile damage behaviour of a dual-phase steel sheet by proposing a new damage mechanics approach derived from the combination of different types of damage models. It addresses the influence of stress state on the plasticity behaviour and onset of damage of materials, and quantifies the microstructure degradation using a dissipation-energy-based damage evolution law. The model is implemented into ABAQUS/Explicit by means of a user material subroutine (VUMAT) and applied to the subsequent numerical simulations. A hybrid experimental and numerical approach is employed to calibrate the material parameters, and the detailed program is demonstrated. The calibrated parameters and the model are then verified by experiments at different levels, and a good agreement between the experimental and numerical results is achieved.


Sign in / Sign up

Export Citation Format

Share Document