A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets

2012 ◽  
Vol 22 (2) ◽  
pp. 188-218 ◽  
Author(s):  
J Lian ◽  
M Sharaf ◽  
F Archie ◽  
S Münstermann

The ductile damage mechanisms dominating in modern high-strength steels have emphasised the significance of the onset of damage and the subsequent damage evolution in sheet metal forming processes. This paper contributes to the modelling of the plasticity and ductile damage behaviour of a dual-phase steel sheet by proposing a new damage mechanics approach derived from the combination of different types of damage models. It addresses the influence of stress state on the plasticity behaviour and onset of damage of materials, and quantifies the microstructure degradation using a dissipation-energy-based damage evolution law. The model is implemented into ABAQUS/Explicit by means of a user material subroutine (VUMAT) and applied to the subsequent numerical simulations. A hybrid experimental and numerical approach is employed to calibrate the material parameters, and the detailed program is demonstrated. The calibrated parameters and the model are then verified by experiments at different levels, and a good agreement between the experimental and numerical results is achieved.

2000 ◽  
Author(s):  
Nicola Bonora ◽  
Domenico Gentile ◽  
Pietro Paolo Milella ◽  
Golam Newaz ◽  
Francesco Iacoviello

Abstract Failure of ductile metals is always controlled at microstructural level by the formation and growth of microcavities that nucleate from inclusions embedded in the ductile matrix, also at high deformation rate. Many damage models have been proposed to describe both evolutions of these cavities under the action of increasing plastic deformation, and the associated effects on the material behavior. Basically, two classes of damage models are currently available: the Gurson’s type model and continuum damage mechanics (CDM). In the framework of CDM, Bonora (1997) proposed a non-linear damage model for ductile failure that overcome the main limitations presented by others formulations: the model is material independent and its validity under multiaxial state of stress conditions has been verified for a number of class of metals, (Bonora, 1998, Bonora and Newaz, 1997). In addition, this model has the main feature to require a limited number of physically based parameters that can be easily identified with ad hoc tensile tests. In this paper, for the first time, the effect of the strain rate on ductile damage evolution has been studied in a quantitative manner evaluating the material loss of stiffness under dynamic loading. Damage measurements on SA537 Cl 1 steel have been performed according to the multiple strain gauge technique on hourglass shaped rectangular tensile specimen. Dynamic effect was introduced performing the test at different imposed displacement rates. An extensive scanning electron microscopy analysis has been performed in order to correlate damage effects with the microstructure morphological modification as a function of the applied deformation rate.


Author(s):  
Ming Liu ◽  
Yong-Yi Wang

Pipelines experiencing displacement-controlled loading need to have adequate strain capacity. Large tensile strain capacity can only be achieved when the failure processes are ductile. In ductile failure analyses, the strain capacity may be determined by two approaches. The first approach uses the conventional fracture mechanics criteria, such as the attainment of the critical crack tip opening displacement, to assess the onset of the crack propagation. The other approach uses damage mechanics models in which the onset and propagation of cracks are controlled by the nucleation, growth, and coalescence of voids in the material. The damage mechanics models can provide some insights of the ductile failure processes as they have more physical mechanisms built in the constitutive model. In this paper, the Gurson-Tvergaard-Needleman (GTN) model is applied to two types of low-constraint tests: curved wide plates and back-bend specimens. The wide plate test is considered more representatives of full-scale pipes than the conventional laboratory-sized specimens, but requires large-capacity machines. The back-bend test is a newly developed low-constraint laboratory-sized test specimen. A relatively simple approach to determine the damage parameters of the GTN model is discussed and the transferability of damage parameters between those two test types is also analyzed.


Author(s):  
Y. I. Hezentsvei ◽  
D. O. Bannikov

Purpose. The work is aimed to study the use efficiency of fine-grained heat-strengthened steels (mainly 10G2FB) for steel bunker capacities. At the same time, the structural scheme of such a structure using corrugated steel sheets is considered as the main variant. Methodology. To achieve this purpose, a series of numerical calculations was carried out for a steel bunker capacity of a pyramidal-prismatic type with overall dimensions in plan view of 6×5.2 m and a total height of 4.5 m. The capacity was designed for complicated working conditions, in particular, increased loads, including long-term dynamic ones. The potential possibility of operating the container under conditions of high or low temperatures was also taken into account. At the same time, both the traditional structural scheme of a bunker capacity with horizontal stiffening ribs and the developed structural scheme based on corrugated steel sheets were analyzed. The calculations were carried out by the finite element method based on the SCAD for Windows project complex. Findings. Based on the results of the analysis and comparison of the data obtained in numerical calculations, it was found that the use of fine-grained heat-strengthened high-strength steels (for example, steel 10G2FB) for bunker capacities, both the traditional structural scheme with stiffening ribs and the developed structural scheme based on corrugated sheets, allows reducing material consumption by about 30% in both cases. At the same time, due to the good performance of fine-grained heat-strengthened steel 10G2FB, both at high and at low temperatures, it can be effectively used for steel bunker capacities that work in difficult conditions. Originality. The possibility and efficiency of the use of fine-grained, heat-strengthened high-strength steels for the construction of a steel bunker capacity is estimated. At the same time, such an estimation was given not only for structures of the traditional structural scheme with horizontal stiffening ribs, but also for bunkers with a developed structural scheme based on corrugated sheets. Practical value. From a practical point of view, quantitative parameters of the stress-strain state were obtained during investigations of various design variants for a steel bunker capacity. The data are presented in a compact form that is easy to evaluate and compare. They allow us to state about the improvement of the operation characteristics of capacities and the potential reduction of the risks of their failures and accidents during operation.


2014 ◽  
Author(s):  
Erica Liverani ◽  
Alessandro Ascari ◽  
Alessandro Fortunato ◽  
Adrian Lutey

This paper presents the feasibility of an innovative application of laser-assisted bending process. The high strength steel sheets bending, carried out after a laser heat treatment, is studied. Several strategies aimed at obtaining a ductile structure along the bending line, suitable for cold forming, are investigated. The influence of laser processing parameters on the microstructure, hardness and strength of the sheets are discussed and analyzed. In order to predict the temperature and ensure the repeatability and reliability of the process, a model for heat treatment simulation is developed. The study of the experimental data and the integration with the simulation of the heating phase lead to the definition of specific process parameters suitable for achieving a crack-free cold bending of high strength steels.


2015 ◽  
Vol 639 ◽  
pp. 419-426
Author(s):  
Ioannis Tsoupis ◽  
Marion Merklein

Within this paper a numerical study of the Continuum Damage Mechanics based damage model Lemaitre in commercial software LS-DYNA is performed in order to correctly predict failure in terms of crack occurrence within small curvature bending of AHSS steels. A strain based calibration method is used for the effective adaption of the Lemaitre model to the bending operation, which is based on the comparison and adaption of the numerically calculated and the experimentally measured deformation field on the outer surface of the bent specimen. Within this method the material dependent damage parameter S is systematically varied in the simulation in order to represent maximum major strain. The new method is proved by numerical simulation of experiments provoking crack initiation using smaller bending radii. It can be shown that failure in terms of crack initiation can be correctly predicted by the model with the damage parameters, which were determined by the method of strain based calibration and an additional optimisation of the parameter Dc. Thus, within this study a user friendly and effective way for the application of Lemaitre damage model to small curvature bending processes of AHSS steels is developed.


2017 ◽  
Vol 885 ◽  
pp. 80-85 ◽  
Author(s):  
Eszter Kalácska ◽  
Kornél Májlinger ◽  
Enikő Réka Fábián ◽  
Pasquale Russo Spena

The need for steel materials with increasing strength is constantly growing. The main application of such advanced high strength steels (AHSS) is the automobile industry, therefore the welding process of different types of AHSSs in dissimilar welding joint was investigated. To simulate the mass production of thin steel sheet constructions (such as car bodies) automated metal inert gas (MIG) welding process was used to weld the TWIP (twinning induced plasticity) and TRIP (transformation induced plasticity) steel sheets together. The welding parameters were successfully optimized for butt welded joints. The joints were investigated by visual examination, tensile testing, quantitative metallography and hardness measurements. The TRIP steel side of the joints showed increased microhardness up to (450-500 HV0.1) through increased fraction of bainite and martensite. Macroscopically the tensile specimen showed ductile behaviour, they broke in the austenitic weld material.


2021 ◽  
Vol 883 ◽  
pp. 294-302
Author(s):  
Bernd Arno Behrens ◽  
Kai Brunotte ◽  
Hendrik Wester ◽  
Matthäus Dykiert

Advanced High Strength Steels (AHSS) are widely used in today's automotive structures for lightweight design purposes. FE simulation is commonly used for the design of forming processes in automotive industry. Therefore, besides the description of the plastic flow behaviour, also the definition of forming limits in order to efficiently exploit the forming potential of a material is required. AHSS are prone for crack appearances without prior indication by thinning, like exemplary shear fracture on tight radii and edge-fracture, which can not be predicted by conventional Forming Limit Curve (FLC). Stress based damage models are able to do this. However, the parameterisation of such models has not yet been standardised. In this study a butterfly specimen geometry, which was developed at the Institute for Forming Technology and Machines (IFUM), was used for a stress state dependent fracture characterisation. The fracture behaviour of two AHSS, CP800 and DP1000, at varied stress states between pure shear and uniaxial loading was characterised by an experimental-numerical approach. For variation of the stress state, the specimen orientation relative to the force direction of the uniaxial testing machine was orientated at different angles. In this way, the relevant displacement until fracture initiation was determined experimentally. Subsequently, the experimental tests have been numerically reproduced giving information about the strain and stress evolution in the crack impact area of the specimen for the experimentally identified fracture initiation. With the help of this testing procedure, two different stress-based damage models, Modified Mohr-Coulomb (MMC) and CrachFEM, were parameterised and compared.


2009 ◽  
Vol 410-411 ◽  
pp. 3-11 ◽  
Author(s):  
Marion Merklein ◽  
Markus Kaupper

Nowadays advanced high strength steel sheets and related forming technologies play an important role in lightweight construction in the transportation sector. Since especially car seat components are subject to very strict safety demands, the application of these modern steel grades, which provide enhanced strength levels, seems to be a promising strategy to meet the challenge of reducing the sheet metal thickness while maintaining the crash energy absorption capacity. Concerning the high required level of part complexity and accuracy both the reduced formability and the increased springback tendency of advanced high strength steels are challenges for forming technologies compared to conventional steel grades. Against this background the forming potentials of advanced high strength steels are investigated and are made accessible for an application in structural car seat components. The analysis is to be done both experimentally and numerically, focusing on the finite element method (FEM) regarding a reliable process design.


Sign in / Sign up

Export Citation Format

Share Document