scholarly journals Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models

2019 ◽  
Vol 57 (3) ◽  
pp. 271-286 ◽  
Author(s):  
Gema Casal ◽  
Paul Harris ◽  
Xavier Monteys ◽  
John Hedley ◽  
Conor Cahalane ◽  
...  
2021 ◽  
Vol 12 (6) ◽  
pp. 1-19
Author(s):  
Yifan He ◽  
Zhao Li ◽  
Lei Fu ◽  
Anhui Wang ◽  
Peng Zhang ◽  
...  

In the emerging business of food delivery, rider traffic accidents raise financial cost and social traffic burden. Although there has been much effort on traffic accident forecasting using temporal-spatial prediction models, none of the existing work studies the problem of detecting the takeaway rider accidents based on food delivery trajectory data. In this article, we aim to detect whether a takeaway rider meets an accident on a certain time period based on trajectories of food delivery and riders’ contextual information. The food delivery data has a heterogeneous information structure and carries contextual information such as weather and delivery history, and trajectory data are collected as a spatial-temporal sequence. In this article, we propose a TakeAway Rider Accident detection fusion network TARA-Net to jointly model these heterogeneous and spatial-temporal sequence data. We utilize the residual network to extract basic contextual information features and take advantage of a transformer encoder to capture trajectory features. These embedding features are concatenated into a pyramidal feed-forward neural network. We jointly train the above three components to combine the benefits of spatial-temporal trajectory data and sparse basic contextual data for early detecting traffic accidents. Furthermore, although traffic accidents rarely happen in food delivery, we propose a sampling mechanism to alleviate the imbalance of samples when training the model. We evaluate the model on a transportation mode classification dataset Geolife and a real-world Ele.me dataset with over 3 million riders. The experimental results show that the proposed model is superior to the state-of-the-art.


2020 ◽  
Author(s):  
Hanna Meyer ◽  
Edzer Pebesma

<p>Spatial mapping is an important task in environmental science to reveal spatial patterns and changes of the environment. In this context predictive modelling using flexible machine learning algorithms has become very popular. However, looking at the diversity of modelled (global) maps of environmental variables, there might be increasingly the impression that machine learning is a magic tool to map everything. Recently, the reliability of such maps have been increasingly questioned, calling for a reliable quantification of uncertainties.</p><p>Though spatial (cross-)validation allows giving a general error estimate for the predictions, models are usually applied to make predictions for a much larger area or might even be transferred to make predictions for an area where they were not trained on. But by making predictions on heterogeneous landscapes, there will be areas that feature environmental properties that have not been observed in the training data and hence not learned by the algorithm. This is problematic as most machine learning algorithms are weak in extrapolations and can only make reliable predictions for environments with conditions the model has knowledge about. Hence predictions for environmental conditions that differ significantly from the training data have to be considered as uncertain.</p><p>To approach this problem, we suggest a measure of uncertainty that allows identifying locations where predictions should be regarded with care. The proposed uncertainty measure is based on distances to the training data in the multidimensional predictor variable space. However, distances are not equally relevant within the feature space but some variables are more important than others in the machine learning model and hence are mainly responsible for prediction patterns. Therefore, we weight the distances by the model-derived importance of the predictors. </p><p>As a case study we use a simulated area-wide response variable for Europe, bio-climatic variables as predictors, as well as simulated field samples. Random Forest is applied as algorithm to predict the simulated response. The model is then used to make predictions for entire Europe. We then calculate the corresponding uncertainty and compare it to the area-wide true prediction error. The results show that the uncertainty map reflects the patterns in the true error very well and considerably outperforms ensemble-based standard deviations of predictions as indicator for uncertainty.</p><p>The resulting map of uncertainty gives valuable insights into spatial patterns of prediction uncertainty which is important when the predictions are used as a baseline for decision making or subsequent environmental modelling. Hence, we suggest that a map of distance-based uncertainty should be given in addition to prediction maps.</p>


Author(s):  
Jean Michel Moura-Bueno ◽  
Ricardo Simão Diniz Dalmolin ◽  
Taciara Zborowski Horst-Heinen ◽  
Luciano Campos Cancian ◽  
Ricardo Bergamo Schenato ◽  
...  

Abstract: The objective of this work was to evaluate the use of covariate selection by expert knowledge on the performance of soil class predictive models in a complex landscape, in order to identify the best predictive model for digital soil mapping in the Southern region of Brazil. A total of 164 points were sampled in the field using the conditioned Latin hypercube, considering the covariates elevation, slope, and aspect. From the digital elevation model, environmental covariates were extracted, composing three sets, made up of: 21 covariates, covariates after the exclusion of the multicollinear ones, and covariates chosen by expert knowledge. Prediction was performed with the following models: decision tree, random forest, multiple logistic regression, and support vector machine. The accuracy of the models was evaluated by the kappa index (K), general accuracy (GA), and class accuracy. The prediction models were sensitive to the disproportionate sampling of soil classes. The best predicted map achieved a GA of 71% and K of 0.59. The use of the covariate set chosen by expert knowledge improves model performance in predicting soil classes in a complex landscape, and random forest is the best model for the spatial prediction of soil classes.


2020 ◽  
Vol 12 (21) ◽  
pp. 3613 ◽  
Author(s):  
Fadhlullah Ramadhani ◽  
Reddy Pullanagari ◽  
Gabor Kereszturi ◽  
Jonathan Procter

Rice (Oryza sativa L.) is a staple food crop for more than half of the world’s population. Rice production is facing a myriad of problems, including water shortage, climate, and land-use change. Accurate maps of rice growth stages are critical for monitoring rice production and assessing its impacts on national and global food security. Rice growth stages are typically monitored by coarse-resolution satellite imagery. However, it is difficult to accurately map due to the occurrence of mixed pixels in fragmented and patchy rice fields, as well as cloud cover, particularly in tropical countries. To solve these problems, we developed an automated mapping workflow to produce near real-time multi-temporal maps of rice growth stages at a 10-m spatial resolution using multisource remote sensing data (Sentinel-2, MOD13Q1, and Sentinel-1). This study was investigated between 1 June and 29 September 2018 in two (wet and dry) areas of Java Island in Indonesia. First, we built prediction models based on Sentinel-2, and fusion of MOD13Q1/Sentinel-1 using the ground truth information. Second, we applied the prediction models on all images in area and time and separation between the non-rice planting class and rice planting class over the cropping pattern. Moreover, the model’s consistency on the multitemporal map with a 5–30-day lag was investigated. The result indicates that the Sentinel-2 based model classification gives a high overall accuracy of 90.6% and the fusion model MOD13Q1/Sentinel-1 shows 78.3%. The performance of multitemporal maps was consistent between time lags with an accuracy of 83.27–90.39% for Sentinel-2 and 84.15% for the integration of Sentinel-2/MOD13Q1/Sentinel-1. The results from this study show that it is possible to integrate multisource remote sensing for regular monitoring of rice phenology, thereby generating spatial information to support local-, national-, and regional-scale food security applications.


2021 ◽  
Vol 3 (1) ◽  
pp. 118-137
Author(s):  
Tom Hardy ◽  
Lammert Kooistra ◽  
Marston Domingues Franceschini ◽  
Sebastiaan Richter ◽  
Erwin Vonk ◽  
...  

Grasslands are important for their ecological values and for agricultural activities such as livestock production worldwide. Efficient grassland management is vital to these values and activities, and remote sensing technologies are increasingly being used to characterize the spatiotemporal variation of grasslands to support those management practices. For this study, Sentinel-2 satellite imagery was used as an input to develop an open-source and automated monitoring system (Sen2Grass) to gain field-specific grassland information on the national and regional level for any given time range as of January 2016. This system was implemented in a cloud-computing platform (StellaSpark Nexus) designed to process large geospatial data streams from a variety of sources and was tested for a number of parcels from the Haus Riswick experimental farm in Germany. Despite outliers due to fluctuating weather conditions, vegetation index time series suggested four distinct growing cycles per growing season. Established relationships between vegetation indices and grassland yield showed poor to moderate positive trends, implying that vegetation indices could be a potential predictor for grassland biomass and chlorophyll content. However, the inclusion of larger and additional datasets such as Sentinel-1 imagery could be beneficial to developing more robust prediction models and for automatic detection of mowing events for grasslands.


Sign in / Sign up

Export Citation Format

Share Document