Symbolic Computation to Derive a Linear-Elastic Buckling Theory for Solids with Periodic Microstructure

Author(s):  
Miguel Matos Neves
Author(s):  
Phillip E. Wiseman ◽  
Zara Z. Hoch

Axial compression allowable stress for pipe supports and restraints based on linear elastic analysis is detailed in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NF. The axial compression design by analysis equations within NF-3300 are replicated from the American Institute of Steel Construction (AISC) using the Allowable Stress Design (ASD) Method which were first published in the ASME Code in 1973. Although the ASME Boiler and Pressure Vessel Code is an international code, these equations are not familiar to many users outside the American Industry. For those unfamiliar with the allowable stress equations, the equations do not simply address the elastic buckling of a support or restraint which may occur when the slenderness ratio of the pipe support or restraint is relatively large, however, the allowable stress equations address each aspect of stability which encompasses the phenomena of elastic buckling and yielding of a pipe support or restraint. As a result, discussion of the axial compression allowable stresses provides much insight of how the equations have evolved over the last forty years and how they could be refined.


1995 ◽  
Vol 21 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Stuart E. Swartz ◽  
Robert J. O'Neill

2011 ◽  
Vol 90-93 ◽  
pp. 1149-1156 ◽  
Author(s):  
Yang Liu ◽  
Da Wang ◽  
Yi Zhou Zhu

In order to study the ultimate load-bearing capacity of the long-span concrete-filled steel tubular (CFST) arch bridge with fly-bird-type, the ANSYS finite element program was used to establish its special model, and to study ultimate load-bearing capacity of this bridge with three different methods. The constitutive relation factors of concrete-filled steel tubular was taken into consideration including confining effect ultimate load coefficients, failure modes, and load-displacement curves of this bridge under different cases. The result indicate that the ultimate load-bearing capacity of the bridge can meet the requirement, all of its failure modes is out-plane, the two methods, linear elastic buckling analysis and only geometric nonlinearity analysis, will over high estimate ultimate load-bearing capacity of this bridge, and linear elastic buckling method cannot reflect real failure mode of this structure. In order to correctly estimate the ultimate load-bearing capacity of the bridge structure, the effect of geometric and material double nonlinearity couldn’t be neglected.


Author(s):  
Phillip E. Wiseman ◽  
Zara Z. Hoch

Axial compression allowable stress for pipe supports and restraints based on linear elastic analysis is detailed in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NF. The axial compression design by analysis equations within NF-3300 is replicated from the American Institute of Steel Construction (AISC) using the Allowable Stress Design (ASD) Method which was first published in the ASME Code in 1973. Although the ASME Boiler and Pressure Vessel Code is an international code, these equations are not familiar to many users outside the American Industry. For those unfamiliar with the allowable stress equations, the equations do not simply address the elastic buckling of a support or restraint which may occur when the slenderness ratio of the pipe support or restraint is relatively large, however, the allowable stress equations address each aspect of stability which encompasses the phenomena of elastic buckling and yielding of a pipe support or restraint. As a result, discussion of the axial compression allowable stresses provides much insight of how the equations have evolved over the last forty years and how they could be refined.


10.2514/3.920 ◽  
1997 ◽  
Vol 11 ◽  
pp. 472-476
Author(s):  
Henry H. Kerr ◽  
F. C. Frank ◽  
Jae-Woo Lee ◽  
W. H. Mason ◽  
Ching-Yu Yang

Sign in / Sign up

Export Citation Format

Share Document