Analysis of Ultimate Load-Bearing Capacity of Long-Span CFST Arch Bridges

2011 ◽  
Vol 90-93 ◽  
pp. 1149-1156 ◽  
Author(s):  
Yang Liu ◽  
Da Wang ◽  
Yi Zhou Zhu

In order to study the ultimate load-bearing capacity of the long-span concrete-filled steel tubular (CFST) arch bridge with fly-bird-type, the ANSYS finite element program was used to establish its special model, and to study ultimate load-bearing capacity of this bridge with three different methods. The constitutive relation factors of concrete-filled steel tubular was taken into consideration including confining effect ultimate load coefficients, failure modes, and load-displacement curves of this bridge under different cases. The result indicate that the ultimate load-bearing capacity of the bridge can meet the requirement, all of its failure modes is out-plane, the two methods, linear elastic buckling analysis and only geometric nonlinearity analysis, will over high estimate ultimate load-bearing capacity of this bridge, and linear elastic buckling method cannot reflect real failure mode of this structure. In order to correctly estimate the ultimate load-bearing capacity of the bridge structure, the effect of geometric and material double nonlinearity couldn’t be neglected.

2016 ◽  
Vol 8 (3) ◽  
pp. 85-93
Author(s):  
Andrej Mudrov ◽  
Gintas Šaučiuvėnas ◽  
Antanas Sapalas ◽  
Ivar Talvik

This article considers the calculation of load-bearing capacity of flange-plate joints with bolts along two sides of rectangular hollow sections (RHS) under axial tension. It provides a review and comparison of various calculation methodologies for establishing the load-bearing capacity of RHS flange-plate joints, such as suggested in EN 1993-1-8:2005 and STR 2.05.08:2005 as well as those proposed in different countries and by other authors. Common design principles and derived results for load-bearing capacity of flange-plate joints have been analysed and compared. Following the numerical modelling, which has been done using ANSYS Workbench finite element program, the derived results for load-bearing capacity have been compared with analytical load-bearing capacity results for flange-plate joints of the same structure. The analysis has focused on one type of flange-plate joints with bolts – both preloaded and non-preloaded – along two opposite sides of the tube, with the flange thickness of 15 mm and 25 mm.


2021 ◽  
Vol 60 (1) ◽  
pp. 64-79
Author(s):  
Junqing Hong ◽  
Shaofeng Zhang ◽  
Hai Fang ◽  
Xunqian Xu ◽  
Honglei Xie ◽  
...  

Abstract The performance of textile reinforced concrete composite panels (TRCCPs) under the action of pseudo-static load up to collapse was evaluated. The test of TRCCPs under axial and transverse loading was conducted, and the results were compared with those for steel wire mesh reinforced-concrete composite panels (SMRCCPs). Ceram-site concrete was utilized as the panel matrix owing to its lightweight and insulation characteristics. The ultimate load bearing capacity, load-deformation and load-strain relationships, and failure modes were discussed and investigated in comparison with the findings of non-linear finite-element-model (FEM) analysis and the analytic method on the basis of the reinforced concrete (RC) theory. The analysis results indicate that TRCCP is suitable for use as a potential structural member for a wall or slab system of buildings, and the typical RC theory can be applied to predict the ultimate load bearing capacity if modified suitably.


2011 ◽  
Vol 261-263 ◽  
pp. 765-769 ◽  
Author(s):  
Han Xu ◽  
Xiao Nong Guo ◽  
Yong Feng Luo

The application of Aluminum alloy T-stub joints has been found widely in China recently, while the research achievements of the joint are far from adequate for design. This paper is focused on the ultimate load-bearing capacity of aluminum alloy T-stub joints. On the basis of Kulak prying model, formulas for calculating ultimate load-bearing capacity, considering four types of failure modes, are derived. The numerical simulation is carried out by means of ABAQUS FEA. Numerical results are verified by comparing with previous results obtained from experimental analysis. A parametric analysis is performed to investigate the influence of several geometrical parameters on the behavior of aluminum alloy T-stub joints including failure modes, ultimate load-bearing capacity and effective length of flanges. These numerical results are also compared with those calculated by relevant formulas in EC9.


2007 ◽  
Vol 13 (3) ◽  
pp. 201-207 ◽  
Author(s):  
Saulius Kavaliauskas ◽  
Audronis Kazimieras Kvedaras ◽  
Balys Valiūnas

The purpose of this paper is to adopt the Johansen's yielding theory as a possibility to predict the ultimate load for timber‐to‐concrete joints using self‐tapping threaded connectors screwed at an angle into the wood. The ultimate load‐bearing capacity of a single connector is predicted to be when either the stresses in the wood reach the plastic failure stress level or when a combination of plastic failure in wood and dowel is attained. K. W. Johansen assumed that no axial tension occurred in the dowel and, thus no frictional contribution affected the lateral load‐bearing capacity. However, the joints with inclined fasteners are first affected by tension load, so the withdrawal capacity of the screws has to be taken into account. In order to determine the load bearing capacity for specific connector geometry, the kinematical possible failure modes are determined. The screw in the concrete part of connection was taken as rigidly embedded and thus no deformations appeared. The study showed that the load‐bearing capacity for connections with inclined high tensile strength screws can be predicted using the yielding theory, but this theory was unable to predict precisely the failure mode. Possible reasons for that include limited fastener ductility and influence of the screw inclination on the strength properties of timber.


2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


2017 ◽  
Vol 2017 ◽  
pp. 1-20
Author(s):  
Ulf Arne Girhammar ◽  
Bo Källsner

The authors present an experimental and analytical study of slotted-in connections for joining walls in the Masonite flexible building (MFB) system. These connections are used for splicing wall elements and for tying down uplifting forces and resisting horizontal shear forces in stabilizing walls. The connection plates are inserted in a perimeter slot in the PlyBoard™ panel (a composite laminated wood panel) and fixed mechanically with screw fasteners. The load-bearing capacity of the slotted-in connection is determined experimentally and derived analytically for different failure modes. The test results show ductile postpeak load-slip characteristics, indicating that a plastic design method can be applied to calculate the horizontal load-bearing capacity of this type of shear walls.


2010 ◽  
Vol 163-167 ◽  
pp. 2171-2175 ◽  
Author(s):  
Jun Ping Liu ◽  
Yong Jian Liu ◽  
Jian Yang

Based on the experimental results, this paper presents the effects of concrete-filled in chord on the static behavior of rectangular hollow section (RHS) steel tubular trusses, including failure modes, load bearing capacity and structural stiffness. Failure of RHS trusses occurs at joints wether concrete-filled in chord or not, concrete-filled in chord changed the failure mode. Load bearing capacity and stiffness of joints subjected to compression load increased significantly, while it is limited to the tension joints. Concrete-filled in the compression chord tube can increase its stiffness significantly, while tension chord tube, it is not that obvious. Finally, based on the results discussed, failure modes and their formulas of calculating the load bearing capacity are discussed. Meanwhile, two methods, that is, amplified factor method and stiffness discounting method, which calculate the structural displacement when considering the joint deformation effects are presented.


2011 ◽  
Vol 311-313 ◽  
pp. 1941-1944
Author(s):  
Gui Bing Li ◽  
Yu Gang Guo ◽  
Xiao Yan Sun

intermediate crack-induced debondingis one of the most dominant failure modes in FRP-strengthened RC beams. Different code models and provisions have been proposed to mitigateintermediate crack-induced debondingfailure.However, these models and provisions can not mitigate this failure mode effectively. Recnetly, new models have been proposed to solve this problem. Out of all the existing models, four typical ones are investigated in the current study. A comprehensivecomparison among these models is carried out in order to evaluate their performance and accuracy. Test results offlexural specimens with intermediate crack-induced debonding failurecollected from the existing literature are used in the current comparison. The effectivenessand accuracy of each model have been evaluated based on these experimental results. It is shown that the current modals are all conservative and inadequite to effectively mitigate intermediate crack-induced debonding in flexurally strengthened members.


Author(s):  
Risa Fujinaga ◽  
Tatsumasa Kaita ◽  
Ryoko Koyama ◽  
Tsutomu Imai ◽  
Katashi Fujii

The load bearing capacity of an existing corroded pony truss bridge, which is used for 100 years was estimated from FEM results for whole bridge model. The beam element model is to clarify that the influence of the residual out-of-plane deformation in main truss structures on the load bearing capacity from the viewpoint of whole bridge. Also, shell element model is to clarify that the influence of severe corrosion damages occurred in many structural members on the load bearing capacity as whole bridge. On the other hand, the influence of assumed support conditions in analytical models were discussed from the analytical results of both type of models, because it will be thought that the performance of shoes deteriorates gradually by long in-service period. The ultimate load bearing capacity was estimated by the critical live load magnification. From the analytical results, the residual out-of-plane deformation of main truss structures in this bridge had little influence on the ultimate load bearing capacity. Also, the ultimate load bearing capacity may decrease up to 20% due to aging deterioration of shoes including corrosion damages. In bridge maintenance, it should be paid attention on local severe corrosion damages on the structural member, which may occur higher secondary stress.


2021 ◽  
Vol 31 (2) ◽  
pp. 117-137
Author(s):  
Sagar Jaiswal ◽  
Vinay Bhushan Chauhan

Abstract The use of geosynthetic reinforcement to enhance the ultimate load-bearing capacity and reduce the anticipated settlement of the shallow foundation has gained sufficient attention in the geotechnical field. The improved performance of the shallow foundation is achieved by providing one or more layers of geosynthetics below the foundation. The full wraparound technique proved to be efficient for the confinement of soil mass and reduction in settlement of foundation however lacks the literature to ascertain the performances of such footing under dynamic loading. In view of the above, the present study examines the effect of geosynthetic layers having a finite length with full wraparound ends as a reinforcement layer, placed horizontally at a suitable depth below the foundation using the finite element modeling (FEM) and evaluates the ultimate load-bearing capacity of a strip footing resting on loose and dense coarse-grained earth beds under seismic loading and further compared to those of footing resting on unreinforced earth bed. Moreover, the effect of horizontal seismic acceleration coefficient (kh) on the ultimate load-bearing capacity has been investigated by varying kh from 0.1 to 0.6 at an interval of 0.1, for both reinforced and unreinforced earth bed having loose and dense soil strata. Furthermore, this study demonstrates that by adopting the new practice of using the geosynthetic reinforcement with the full wraparound ends in foundations, it is possible to support relatively heavier structures under static as well as dynamic loading without allowing large footing settlements. From the outcomes of the present study, it is noted that the ultimate load-bearing capacity of footing resting on loose and dense sand bed found to be improved by 60% and 18% for soils having friction angle of 25° and 40°, respectively compared to respective unreinforced earth beds under static condition.


Sign in / Sign up

Export Citation Format

Share Document