Synthesis, Spectroscopic Characterization, and In Vitro Antimicrobial Screening of 16-Membered Tetraazamacrocyclic Schiff-Base Ligand and its Complexes with Co(II), Ni(II), Cu(II), and Zn(II) Ions

Author(s):  
Mohammad Shakir ◽  
Sadiqa Khanam ◽  
Mohammad Azam ◽  
Asad U. Khan ◽  
Farha Firdaus
2021 ◽  
Vol 33 (7) ◽  
pp. 1488-1494
Author(s):  
S. Arulmozhi ◽  
G. Sasikumar ◽  
A. Subramani ◽  
A. Sudha ◽  
S.J. Askar Ali

The metal(II) complexes were synthesized by addition of corresponding MCl2 (M = Mn2+, Ni2+, Cu2+ and Zn2+) with 1,2-bis(1H-pyrrol-2-ylmethylene)diazane in methanol. The ligand acts as a bidentate as confirmed from the mass, IR, UV, NMR and EPR spectral studies. The Schiff base ligand forms hexa-coordinated complexes having octahedral geometry for Mn(II), Ni(II), Zn(II) and Cu(II) complexes. The metal complexes showed an excellent antimicrobial activity spectrum in vitro against both Gram-negative (Klebsiella pneumoniae and Acinetobacter baumannii), Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and human pathogenic bacteria isolates. To find the binding affinity with protein BSA kinase, for that molecular docking studies were also carried for all the four synthesized metal(II) complexes. The anticancer activity of the synthesized metal(II) complexes was also screened against the three human tumor cell lines MCF7 human breast adenocarcinoma cell line, CaSki human caucasian cervical epidermoid carcinoma and HCT116 human colon cancer cell lines. The present study showed that Zn(II) complex showed potent inhibition by the ratio of 80% as compared to the inhibition in the normal cells (L-6).


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
M. M. El-ajaily ◽  
H. A. Abdullah ◽  
Ahmed Al-janga ◽  
E. E. Saad ◽  
A. A. Maihub

La(III), Zr(IV), and Ce(IV) chelates of 2-[(4-[(Z)-1-(2-hydroxyphenyl)ethylidene]aminobutyl)-ethanimidoyl]phenol were synthesized and characterized by using several physical techniques. The Schiff base was obtained by refluxing of o-hydroxyacetophenone with 1,4-butanediamine in 2 : 1 molar ratio. The CHN elemental analysis results showed the formation of the Schiff base and the chelates has been found to be in 1 : 1 [M : L] ratio. The molar conductance measurements revealed that all the chelates are nonelectrolytes. Structural elucidations of the ligand and its chelates were based on compatible analytical and spectroscopic evidences. The infrared spectral data revealed that the Schiff base coordinates to the metal ions through active sites which are –OH and –C=N groups. According to the electronic spectral data, an octahedral geometry was proposed for the chelates. The synthesized ligand and its metal chelates were screened for their antimicrobial activity against two Gram negative (Escherichia coli, Salmonella kentucky) and two Gram positive (Lactobacillus fermentum, Streptococcus faecalis) bacterial strains, unicellular fungi (Fusarium solani), and filamentous fungi (Aspergillus niger). The activity data showed that the metal chelates have antibacterial and antifungal activity more than the parent Schiff base ligand against one or more bacterial or fungi species. The results also indicated that the metal chelates are higher sensitive antimicrobial agents as compared to the Schiff base ligand.


2013 ◽  
Vol 3 (5) ◽  
pp. 367-370 ◽  
Author(s):  
Waleed Mahmoud Al Momani ◽  
Ziyad Ahmed Taha ◽  
Abdulaziz Mahmoud Ajlouni ◽  
Qasem Mohammad Abu Shaqra ◽  
Muaz Al Zouby

2020 ◽  
Vol 32 (7) ◽  
pp. 1768-1772
Author(s):  
Anita Rani ◽  
Manoj Kumar ◽  
Hardeep Singh Tuli ◽  
Zahoor Abbas ◽  
Vinit Prakash

The study describes the synthesis, characterization and biological activity of a novel Schiff base ligand and its transition metal complexes. The Schiff base ligand was obtained by a condensation reaction between 4-hydroxy-3-methoxybenzaldehyde (p-vanillin) and hydrazine hydrate using ethanol as solvent. A new series of Ni(II) and Fe(III) complexes were also derived by reaction of prepared Schiff base ligand with NiCl2 and FeCl3. Both the ligand and its metal complexes were characterized by solubility, melting point and elemental analysis. These compounds were further identified by analytical techniques, FTIR, NMR and mass spectrometry. The ligand and its transition metal complexes were also subjected to in vitro biological activities i.e. antimicrobial, antiangiogenic and DNA photo cleavage. For antimicrobial activity compounds were tested against two strains of bacteria and two strains of fungi. Different concentrations of prepared compounds were treated with fertilized chicken eggs and plasmid DNA to find out antiangiogenic and DNA photocleavage activity, respectively.


Sign in / Sign up

Export Citation Format

Share Document