scholarly journals Zr(IV), La(III), and Ce(IV) Chelates with 2-[(4-[(Z)-1-(2-Hydroxyphenyl)ethylidene]aminobutyl)-ethanimidoyl]phenol: Synthesis, Spectroscopic Characterization, and Antimicrobial Studies

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
M. M. El-ajaily ◽  
H. A. Abdullah ◽  
Ahmed Al-janga ◽  
E. E. Saad ◽  
A. A. Maihub

La(III), Zr(IV), and Ce(IV) chelates of 2-[(4-[(Z)-1-(2-hydroxyphenyl)ethylidene]aminobutyl)-ethanimidoyl]phenol were synthesized and characterized by using several physical techniques. The Schiff base was obtained by refluxing of o-hydroxyacetophenone with 1,4-butanediamine in 2 : 1 molar ratio. The CHN elemental analysis results showed the formation of the Schiff base and the chelates has been found to be in 1 : 1 [M : L] ratio. The molar conductance measurements revealed that all the chelates are nonelectrolytes. Structural elucidations of the ligand and its chelates were based on compatible analytical and spectroscopic evidences. The infrared spectral data revealed that the Schiff base coordinates to the metal ions through active sites which are –OH and –C=N groups. According to the electronic spectral data, an octahedral geometry was proposed for the chelates. The synthesized ligand and its metal chelates were screened for their antimicrobial activity against two Gram negative (Escherichia coli, Salmonella kentucky) and two Gram positive (Lactobacillus fermentum, Streptococcus faecalis) bacterial strains, unicellular fungi (Fusarium solani), and filamentous fungi (Aspergillus niger). The activity data showed that the metal chelates have antibacterial and antifungal activity more than the parent Schiff base ligand against one or more bacterial or fungi species. The results also indicated that the metal chelates are higher sensitive antimicrobial agents as compared to the Schiff base ligand.

2020 ◽  
Vol 21 (24) ◽  
pp. 9663
Author(s):  
Piotr Piszczek ◽  
Barbara Kubiak ◽  
Patrycja Golińska ◽  
Aleksandra Radtke

The emergence of a large number of bacterial strains resistant to many drugs or disinfectants currently used contributed to the search of new, more effective antimicrobial agents. In the presented paper, we assessed the microbiocidal activity of tri- and tetranuclear oxo-titanium(IV) complexes (TOCs), which were dispersed in the poly(methyl methacrylate) (PMMA) matrix. The TOCs were synthesized in reaction to Ti(OR)4 (R = iPr, iBu) and HO2CR’ (R’ = 4-PhNH2 and 4-PhOH) in a 4:1 molar ratio at room temperature and in Ar atmosphere. The structure of isolated oxo-complexes was confirmed by IR and Raman spectroscopy and mass spectrometry. The antimicrobial activity of the produced composites (PMMA + TOCs) was estimated against Gram-positive (Staphylococcus aureus ATCC 6538 and S. aureus ATCC 25923) and Gram-negative (Escherichia coli ATCC 8739 and E. coli ATCC 25922) bacteria and yeasts of Candida albicans ATCC 10231. All produced composites showed biocidal activity against the bacteria. Composites containing {Ti4O2} cores and the {Ti3O} core stabilized by the 4-hydroxybenzoic ligand showed also high activity against yeasts. The results of investigations carried out suggest that produced (PMMA + TOCs) composites, due to their microbiocidal activity, could find an application in the elimination of microbial contaminations in various fields of our lives.


Author(s):  
B. Akila ◽  
A. Xavier

Schiff base synthesized from 2-hydroxy-1-naphthaldehyde and 2-2’ (ethylene dioxy) bis ethylenediamine (L1) and its Metal complexes, [M (II) (L)6](where M= Mn(II), Ru(III), Cu(II)and V(V) L= Schiff base moiety), have been prepared and characterized by elemental analysis, spectroscopic measurements (infrared, electronic spectroscopy, 1H-NMR, EPR and Mass spectroscopy ). Elemental analysis of the metal complexes was suggested that the stoichiometry ratio is 1:1 (metal-ligand). The electronic spectra suggest an octahedral geometry for MC1and MC2 Schiff base complexes and distorted octahedral for MC3 and MC4 complexes. The Schiff base and its metal chelates have been screened for their invitro test antibacterial activity against three bacteria, gram-positive (Staphylococcus aureus) and gram-negative (Klebsiella pheneuammonia and Salmonella typhi). Two strains of fungus (Aspergillus niger and Candida albicans). The metal chelates were shown to possess more anti fungal activity compare then antibacterial activity and antioxidant properties. The complexes are highly active than the free Schiff-base ligand.    


2000 ◽  
Vol 3 (4) ◽  
pp. 198-201
Author(s):  
Hong-Mei Wang ◽  
Peng Cheng* ◽  
Li-Cun Li ◽  
Shi-Ping Yan ◽  
Zong-Hui Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document