scholarly journals Autophagy modulates cell fate decisions during lineage commitment

Autophagy ◽  
2021 ◽  
pp. 1-17
Author(s):  
Kulbhushan Sharma ◽  
Nagham T. Asp ◽  
Sean P. Harrison ◽  
Richard Siller ◽  
Saphira F. Baumgarten ◽  
...  
2013 ◽  
Vol 9 (8) ◽  
pp. e1003197 ◽  
Author(s):  
Jose Teles ◽  
Cristina Pina ◽  
Patrik Edén ◽  
Mattias Ohlsson ◽  
Tariq Enver ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4353-4353
Author(s):  
Nan Hu ◽  
Yaling Qiu ◽  
Fan Dong

Abstract Neutrophils and monocytes/macrophages are derived from hematopoietic stem cells that, through progressive commitment, give rise to granulocyte-monocyte progenitors that in turn develop into either neutrophils or monocytes/macrophages. Although it is well known that cell fate specification in the hematopoietic system depends on the expression of lineage specific transcription factors, the roles of cytokines in lineage commitment are less clear and two models have been proposed. According to the stochastic model, cell fate choice is stochastic and cytokines simply provide signals for the survival and proliferation of committed cells. The instructive model, on the other hand, proposes that cytokines stimulate intracellular signaling pathways that dictate cell fate decisions. G-CSF and M-CSF are two lineage-specific cytokines that play a dominant role in granulopoiesis and monopoiesis, respectively. Recent studies lend strong support to the roles of G-CSF and M-CSF in instructing lineage commitment. However, the signaling pathways that determine neutrophil versus monocyte cell fate following stimulation with G-CSF and M-CSF are unknown. Here we show that tyrosine (Y) 729 of the G-CSFR is involved in transducing signals that specify neutrophil cell fate. Substitution of Y729 with phenylalanine (F) results in monocytic differentiation in response to G-CSF in murine myeloid 32D and multipotent FDCP-mix A4 cells. G-CSF stimulated activation of Erk1/2 was prolonged in cells expressing G-CSFR Y729F mutant. Significantly, treatment of cells with Mek1/2 inhibitors U0126 or PD0325901 rescued neutrophilic differentiation. M-CSF has been shown to induce prolonged activation of Erk1/2, which is required for monocytic differentiation. Interestingly, the Mek1/2 inhibitors also promoted neutrophil cell fate at the expense of monocytic development in lineage marker negative (Lin-) primary bone marrow cells cultured in M-CSF. We further demonstrate that prolonged activation of Erk1/2 was associated with augmented activation of c-Fos and Egr1, both of which have previously been shown to promote monocytic development. Consistent with this, knockdown of c-Fos or Egr1 redirected 32D cells expressing G-CSFR Y729F mutant to develop into neutrophils in response to G-CSF. We propose that M-CSF stimulates more sustained activation of Erk1/2 than G-CSF does and that the duration of Erk1/2 signaling regulates neutrophil versus monocyte cell fate choices, likely through altering the activation statuses of c-Fos and Egr1. Disclosures No relevant conflicts of interest to declare.


2000 ◽  
Vol 113 (22) ◽  
pp. 3897-3905 ◽  
Author(s):  
J.D. Norton

The ubiquitously expressed family of ID helix-loop-helix (HLH) proteins function as dominant negative regulators of basic HLH (bHLH) transcriptional regulators that drive cell lineage commitment and differentiation in metazoa. Recent data from cell line and in vivo studies have implicated the functions of ID proteins in other cellular processes besides negative regulation of cell differentiation. ID proteins play key roles in the regulation of lineage commitment, cell fate decisions and in the timing of differentiation during neurogenesis, lymphopoiesis and neovascularisation (angiogenesis). They are essential for embryogenesis and for cell cycle progression, and they function as positive regulators of cell proliferation. ID proteins also possess pro-apoptotic properties in a variety of cell types and function as cooperating or dominant oncoproteins in immortalisation of rodent and human cells and in tumour induction in Id-transgenic mice. In several human tumour types, the expression of ID proteins is deregulated, and loss- and gain-of-function studies implicate ID functions in the regulation of tumour growth, vascularisation, invasiveness and metastasis. More recent biochemical studies have also revealed an emerging ‘molecular promiscuity’ of mammalian ID proteins: they directly interact with and modulate the activities of several other families of transcriptional regulator, besides bHLH proteins.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lin Jin ◽  
Yunjia Chen ◽  
David K. Crossman ◽  
Arunima Datta ◽  
Trung Vu ◽  
...  

AbstractAlternative splicing (AS) is involved in cell fate decisions and embryonic development. However, regulation of these processes is poorly understood. Here, we have identified the serine threonine kinase receptor-associated protein (STRAP) as a putative spliceosome-associated factor. Upon Strap deletion, there are numerous AS events observed in mouse embryoid bodies (EBs) undergoing a neuroectoderm-like state. Global mapping of STRAP-RNA binding in mouse embryos by enhanced-CLIP sequencing (eCLIP-seq) reveals that STRAP preferably targets transcripts for nervous system development and regulates AS through preferred binding positions, as demonstrated for two neuronal-specific genes, Nnat and Mark3. We have found that STRAP involves in the assembly of 17S U2 snRNP proteins. Moreover, in Xenopus, loss of Strap leads to impeded lineage differentiation in embryos, delayed neural tube closure, and altered exon skipping. Collectively, our findings reveal a previously unknown function of STRAP in mediating the splicing networks of lineage commitment, alteration of which may be involved in early embryonic lethality in mice.


Sign in / Sign up

Export Citation Format

Share Document